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Abstract—In recent years, containerization has become a major
trend in the cloud due to its high resource utilization efficiency
and convenient DevOps support. However, the complexity of
container system also introduces attack surfaces. This paper
aims to summarize security challenges in the container cloud.
In particular, we first divide the whole container system into
different layers according to their functionalities, including the
kernel layer, the container layer, and the orchestration layer.
We then summarize security-related technologies. After that,
we discuss the security challenges for each layer. Finally, we
present the current protection status for the container system
and highlight future research directions. Our study shows that
to improve the container cloud security, we need to design and
implement more robust kernel isolation mechanisms, conduct
systematic and thorough security analysis on existing container
techniques, and develop comprehensive configuration checking
tools.

Keywords-Container security, Namespaces, Control groups,
Docker, Kubernetes

I. INTRODUCTION

Cloud computing has proliferated in recent years and has
become a fundamental technology for IT companies. Cloud
computing relies on sharing computing resources to achieve
on-demand scaling, cost-saving, and maintenance reduction.
In cloud computing, containerization is becoming a major
trend for its convenience in DevOps and high resource uti-
lization efficiency. In containerization, a self-contained user-
space runtime environment is called a container. Compared
to the virtual machines created by hardware virtualization
technique, multiple containers run on the same shared kernel,
eliminating the burden of maintaining standalone kernel and
achieving high efficient resource utilization. The CNCF Survey
2020 released by the Cloud Native Computing Foundation
shows that the use of containers in production has increased to
92%, and up 300% since 2016 [1]. All leading cloud vendors
are providing container-based solutions, such as AWS Elastic
Container Service and Azure Container Instances.

The architecture of the container cloud is complex and
usually consists of multiple layers. More specifically, the
bottom layer of the container cloud software stack is the
operating system kernel, which manages hardware resources
and provides isolation mechanisms for the upper layer. Above
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the kernel layer, the container layer manages container in-
stances (i.e., user-space runtime environments) and container
images. The top layer of a container system is an orchestration
tool, which monitors workloads and adjusts the number of
containers to achieve dynamic scaling.

Unfortunately, the complexity of the container cloud also
introduces large attack surfaces. As the kernel is shared, a
malicious container can exploit kernel vulnerabilities to attack
the kernel as well as other containers. Moreover, bugs in the
container layer allow the attacker to escape from the con-
tainer. Besides, defects in orchestration tools give the attacker
chances to control the whole container system. Different layers
in the container cloud are facing different security challenges.
While understanding those security challenges is critical for
protecting the container cloud.

In this paper, we give a comprehensive study on the security
challenges of a container system in the cloud. We first divide
the container systems into different layers and introduce the
functionalities of each layer, including kernel layer, container
layer, and the orchestration layer. Next, we summarize the
adopted security techniques of the container cloud. After
that, we analyse the weaknesses and summarize the security
challenges for each layer. Finally, we discuss the current status
for protecting the container system and highlight potential
future research directions.

To summarize, more research efforts are needed in the
following aspects. First, stronger kernel isolation mechanisms
are needed to isolate not only the resources, but also kernel
vulnerabilities. Current sandboxed container and virtualized
container techniques provide better isolation but with an extra
performance overhead. Second, it is necessary to conduct a
systematical security analysis on existing container techniques.
In particular, kernel isolation mechanisms, such as namespaces
and control groups (a.k.a., cgroups), need to be analyzed
to fully understand their effectiveness. The container engine
and runtime enforcement also need to be analyzed to reduce
potential software vulnerabilities. Unfortunately, such analysis
studies are still missing. Third, a comprehensive configuration
checking tool is required to reduce configuration errors. The
container system is complex, requiring proper configurations
on multiple layers, which is error-prone. A comprehensive
configuration checking tool can reduce most configuration
errors and significantly improve the container system security.
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Fig. 1. Container cloud architecture.

II. CONTAINER CLOUD ARCHITECTURES

In this section, we introduce the architecture of the container
cloud. As shown in Figure 1, the container cloud mainly
consists of three layers. ¶ Kernel layer is at the bottom
of the container architecture and serves as the foundation
of the whole container system. In typical native container
environments, multiple container instances run on the same
shared kernel. While the kernel needs to isolate these con-
tainer instances properly and coordinate their resource usages.
Above the kernel, it is the · container layer, including the
container runtimes and container engine. Container runtimes
are in charge of creating and managing the isolated execution
environments (a.k.a., containers) using kernel mechanisms,
such as Linux namespaces and cgroups. The container engine,
such as Docker, is for user command interpretation, container
image composition and management. On the top, we have the
¸ orchestration layer, including orchestration tools, such as
Kubernetes, which automate the deployment and scaling of
containers. Besides above three layers, the container cloud
also needs to use container images. A container image is
a collection of binaries, packages and other dependencies
that are needed to deploy a container instance. The container
runtime loads the container image into the isolated execution
environment to build a container instance. To better understand
the security challenges, we give the necessary background
knowledge on those layers in the following.

A. Kernel Layer

In a typical container environment, multiple native contain-
ers run on the same shared kernel. The kernel needs to isolate
and confine these containers. Traditional resource isolation
and limitation mechanisms cannot meet the requirements of
container systems. For example, the Linux rlimit confines
resource consumption for each process, rather than for each
container. Moreover, rlimit cannot account for critical resource
usages like CPU and memory. It is also important to restrict
system call accesses from containers; otherwise a container
can stop another container by calling critical system calls like
reboot.

Therefore, the Linux kernel introduces building-block fea-
tures to support isolation and restriction that are necessary for
container systems, including namespaces, cgroups, seccomp,
and etc. Each of these features provides a functionality needed
by container systems. For example, namespaces can be used to
isolate the accessible file systems for different processes, while
cgroups can be used to account for and limit the usages of CPU
and memory. To restrict accessible syscalls for a process, one
can use the seccomp. These features need to be combined
together to construct a container, and the Linux kernel itself
does not have the “container” concept. The job of creating a
container is accomplished in the container layer.

B. Container Layer

As mentioned before, the container layer consists of con-
tainer runtimes and the container engine.

1) Container Runtimes: Container runtimes utilize the ker-
nel mechanisms to manage the full life cycle of containers,
including creating, starting, and killing of containers. Most
runtimes follow the runtime specification [2] released by
Open Container Initiative (OCI), which specifies standard
calling interfaces and configuration options so that a user
can invoke different runtimes using the same interfaces and
configurations.

Many prevalent runtimes, such as runc and crun, leverage
namespaces to isolate containers. When creating a container,
the runtime first uses namespaces to set up an isolated en-
vironment. The runtime then switches into the environment,
configures cgroups, drops capabilities, and applies seccomp
restrictions. Finally, the container startup process invokes
execve to start the init process for the container. The Docker
default capability and seccomp configurations can be found on
Docker documents [3].

Note that different containers still share the same host ker-
nel, leading to information leakages [4] and DoS attacks [5].
Improper configurations of container runtimes can even cause
container escapes.

2) Container Engine: Container engines provide user in-
terfaces and image management. They also invoke container
runtimes to manage container life cycle. Image management
includes building, packaging, transferring, and storing images.
For the ease of image management, container engines provide
cp interfaces to copy files from/to container images. How-
ever, malicious users can leverage malicious symbolic links
to achieve arbitrary file accessing on the host. Details on
container engine weaknesses are discussed in §IV-B.

C. Orchestration Layer

The orchestration tool is responsible for managing contain-
ers on a cluster. As mentioned before, it monitors the workload
of the whole container cloud and dynamically increases or de-
creases the number of containers to achieve automate scaling.
As Kubernetes has become the de facto orchestration tool, we
use it as the example in the following sections.

As shown in Figure 2, the architecture of Kubernetes can
be divided into the control plane and the data plane [6]. The
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control plane consists of one or multiple controller nodes, such
as the API server, the scheduler, the storage, and the route
controller. The API server is the core of the control plane. It
receives the REST requests from users and configures other
components accordingly in the cluster, including control plane
components and data plane pods. Therefore, it is critical that
the API server authenticates and authorizes users properly,
otherwise an attacker can compromise the whole cluster. For
security consideration, it is also recommended to run the
control plane on different nodes with the data plane.

The data plane receives commands from the control plane
and carries out the jobs on data plane nodes. The nodes are
actually physical machines or virtual machine instances. Each
node can run multiple pods. A pod is the smallest deployable
unit in Kubernetes, which contains one or more containers.
Containers in the same pod share the same set of names-
paces, cgroups, and filesystem volumes. Container life cycle
management is delegated to the container layer. Therefore,
the Kubernetes data plane faces the same security threats
with the container layer. Moreover, data plane containers can
be affected by compromised containers on the same node
or even in the same cluster, and thus data plane container
isolation as well as communication policies need be carefully
configured [7].

D. Container Images

A container image is a collection of binaries and packages
that are needed by the container instance. Most container
images conform to OCI Image Format Specification [8],
which specifies the standard image format. According to the
specification, an image needs to contain at least a manifest, a
configuration, and one or more filesystem layers. The manifest
should declare high-level information on layers and the con-
figuration, while the configuration records the detailed status
of each layer. The configuration also includes other essential
information needed by container engines, like environment

variables and the image’s entry point.
The content of an image consists of one or more layers.

The bottom layer is the basic filesystem that the image is built
upon. Each upper layer records the changed files compared to
the layer below. For security reasons, all layers, except the
topmost one, are set as read-only in current implementations
of layered file systems, such as aufs and overlayfs. A container
instance can only write to the topmost layer, which is discarded
after the instance is killed. The restriction protects images from
being manipulated by malicious containers.

The standardized formatting makes it easy to share and
reuse images on the network. However, the convenience also
brings the security risk that vulnerable or malicious images can
propagate wider and faster. The details are discussed in §IV-D.

III. CONTAINER ADOPTED SECURITY TECHNIQUES

In this section, we discuss the security techniques that have
been adopted by container systems.

A. Namespaces

The Linux kernel provides namespaces to isolate the re-
source planes [9]. For example, mount namespaces provide
isolation on mount points, which further enable the file
system isolation. The isolation is implemented by providing
different views on mount points for different namespaces.
Consequently, one cannot access the file paths that are not
mapped to the current mount namespaces.

The Linux kernel currently supports 8 types of namespaces,
namely cgroup, ipc, network, mount, pid, time, user, and
uts namespaces, which map to 8 types of resources. Each
type of namespaces has one or more namespace instances. A
namespace instance contains multiple processes, which share
the same resource view. Note that the system processes are
in the root namespace, which has the full view of the whole-
system resources. The Linux kernel provides procfs interfaces
for users to check namespace status. Using the pid namespace
as an example, a user can access the /proc/[pid]/ns/

directory to check the namespace IDs for the pid process.

B. Cgroups

Linux control groups (a.k.a., cgroups) are used to account
for and limit resource usages [10], especially critical hard-
ware resource usages. Cgroups currently have v1 and v2
implementation versions. Although cgroups v1 are still widely
used, it is suggested to upgrade to the v2 version by the
Linux community. The v2 version is empowered by newer
techniques and offers a unified hierarchy organization for
cgroup instances.

Cgroups currently supports 13 types of resources, including
cpu, cpuacct, cpuset, freezer, perf event, memory, hugetlb,
rdma, blkio, pid, device, net cls, and net prio. Each resource
type is managed by the corresponding cgroup controller. A
cgroup user can choose to activate any of these 13 controllers
to account for corresponding resources. For a specific type
of resource, the cgroup instance accounts the total usage
for all processes belonging to it. Multiple cgroup instances



are organized in a tree hierarchy. Cgroups also provide file-
based user interfaces. Similar to procfs interfaces used by
namespaces, cgroups have a cgroup sys filesystem. Users can
manage cgroup instances, check resource usages, and set usage
limitations via the cgroup sys file interfaces.

C. Seccomp

Seccomp is used to restrict syscalls for a process, including
blocking sensitive syscalls and dangerous arguments [11]. It
can be enabled by calling seccomp syscall on a specified
process. Seccomp supports a strict mode and a filter mode.
A process can only make read, write, and _exit syscalls
when the strict mode is applied. On the contrary, the filter
mode allows the user to specify the blocked syscalls and
arguments. The filter mode is achieved by hooking syscall
entries with BPF filters on the target process. When receiving
a syscall from the target process, the kernel first traverses all
installed filters to decide whether the syscall is allowed or
not, before the syscall is actually handled. Once a process
enters the seccomp state, it can no longer disable seccomp.
Moreover, seccomp rules of a process also apply to all
its children processes. Consequently, seccomp is suitable to
restrict containers in the cloud.

D. Mandatory Access Control

The Linux kernel adopts mandatory access control (MAC)
to enforce centralized and fine-grained access control. Com-
pared the discretionary access control (DAC), MAC policies
can only be modified by the system administrator and thus
are tamper-proof. On the other hand, MAC policies are more
fine-grained and can specify accessible permissions for each
process on each resources. MAC is supported by the Linux
security module (LSM), which provides configurable hooks
on security-critical paths in the Linux kernel. Therefore, MAC
is suitable to protect the cloud system against malicious
containers. For example, MAC can enforce that a process
within a container cannot access the files outside of containers,
even the process has root privilege. Popular MAC frameworks
include SELinux, AppArmor, and etc.

E. Sandboxed and Virtualized Containers

Sandboxed runtimes such as gVisor use a user-space kernel
to further isolate containers. The user-space kernel handles
most of the syscalls from containers and makes as few syscalls
as possible on the host system. Using such a defense-in-
depth strategy, sandboxed runtimes reduce the attack surface.
Virtualized runtimes directly place containers in lightweight
VMs. Compared with native runtimes and sandboxed runtimes,
virtualized runtimes provide more robust isolation. A typical
example of virtualized runtimes is kata-runtime. However,
both sandboxed and virtualized runtimes introduce extra per-
formance overhead compared with native runtimes. They also
can be escaped [12] if configured improperly.

F. Role-based Access Control

The most widely used orchestration tool, Kubernetes, adopts
role-based access control (RBAC) to authorize operations on
objects from subjects [13]. Subjects can be users, groups, or
service accounts, while objects can be any resources in the
Kubernetes cluster including pods, nodes, logs, etc. RBAC
uses Role and ClusterRole objects to represent the rights,
including which objects are accessible and how they can be ac-
cessed. These role objects can be bound to subjects to achieve
authorization. The bindings are specified by RoleBinding

and ClusterRoleBinding objects. The scopes of Role and
RoleBinding are restricted by Kubernetes namespaces [14],
while ClusterRole and ClusterRoleBinding are cluster-
wide. By adopting namespaced roles and bindings, the cluster
administrator can achieve fine-grained access control. How-
ever, fine-grained access control also complicates RBAC rules
configuration. As the cluster scale becomes larger, RBAC rules
become error-prone and introduce security risks. The details
are discussed in §IV-C.

IV. CONTAINER SECURITY CHALLENGES

As discussed before, a typical container system usually in-
volves multiple layers, including the kernel layer, the container
layer, and the orchestration layer. The container cloud security
depends on the security of these layers, and it is challenging
to secure all of them. In the following, we will summarize the
security challenges of protecting each of them.

A. Kernel Layer Weaknesses

The shared kernel has become the main security concern of
adopting native containers. It introduces three main security
challenges: vulnerability isolation, resource confinement, and
sensitive data protection. More specifically, the current shared
kernel design of containerization cannot isolate kernel vulner-
abilities. It cannot achieve robust resource confinement either,
including both physical and abstract resource confinement.
Moreover, the shared kernel design also introduces information
leaks, allowing attackers to leak sensitive data or build covert
channels.

1) Kernel Vulnerabilities: Container techniques are not
designed for sandboxing and thus cannot isolate vulnerabil-
ities. For example, Lin et al. demonstrated that 56.82% of
vulnerability exploits could launch successfully from inside
the container [15]. As a result, if the kernel has vulnerabilities,
the attacker can exploit them easily from inside the container
to compromise the host kernel. Therefore, native containers
that run on the shared kernel, are vulnerable to kernel vulner-
abilities.

2) Resource Confinement: Native containers share the hard-
ware (a.k.a., physical) resources of the host system. Therefore,
it is critical to confine and limit the usages of those physical
resources for each container. To achieve this, the Linux kernel
introduces the cgroups to limit the CPU, memory, and IO
resource usages. However, Gao et al. showed that the out-
of-band workloads can break the Linux cgroups’ confine-
ment [16].



Other than physical resources, researchers further identified
that the kernel variables and data structures are also shared
between native containers. These kernel variables and data
structure instances are termed abstract resources. Compared
with physical resources, abstract resources are more prevalent
but under-protected. Therefore, Yang et al. proposed the ab-
stract resource attacks, which attack other native containers
on the same shared kernel by exhausting the shared ab-
stract resources [5]. Their work demonstrated that abstract
resource attacks affect all aspects of Linux kernel function-
alities, including process management, memory management,
storage management, and IO management. Moreover, most
mainstream operating systems, including Linux, FreeBSD, and
Fuchsia, are also vulnerable to abstract resource attacks.

3) Sensitive Data Leaks: Besides kernel vulnerabilities
and weaknesses on resource confinement, the shared ker-
nel may also leak sensitive information, leading to privacy
leakage [17] [18]. Gao et al. revealed that the kernel leaks
information via pseudo file systems, such as /proc and /sys.
Based on the leaked information, they further demonstrated
that the attacker can launch the synergistic power attack that
might impact the reliability of data centers [4]. The authors
further demonstrated that those information leaks can be
exploited to infer private data, detect co-residence, and build
covert channels.

Besides the traditional container environments, security
researchers also found that the function-as-a-service (FaaS)
platform may suffer from information leaks from the memory
bus. They further designed covert channels between Amazon
lambdas based on these information leaks to demonstrate the
feasibility [19].

B. Container Layer Weaknesses

Similar to the kernel layer, the container layer also faces
three security challenges: container vulnerabilities, resource
confinement, and insecure configurations. In particular, severe
CVEs have been identified in Docker engine, runC, containerd,
and the virtualized container. Moreover, researchers revealed
that the frequent communication between container com-
ponents introduces resource exhaustion attacks. In addition,
the insecure configurations in the container layer may also
undermine the container security significantly.

1) Container Layer Vulnerabilities: Dozens of vulnerabili-
ties have been disclosed in the container layer, many of which
are severe enough that attackers could leverage them to escape
containers.
Docker engine vulnerabilities. Docker copy mechanism
caused multiple CVEs that can be triggered via docker cp

command [20]. CVE-2018-15664 is caused by a time-of-
check-to-time-of-use (TOCTOU) bug, which can be triggered
by the symbolic link exchanges. CVE-2019-14271 is caused
due to the loading of a malicious dynamic libraries within
containers. Besides, another container engine named Podman
was also vulnerable to the symbolic link-related issues in the
copy mechanism (podman cp). All of above vulnerabilities
could lead to container escapes.

Runtime vulnerabilities. The popular container runtime con-
tainerd mistakenly exposes containerd-shim API to containers
that share the host network namespace. As a result, attackers
with root privilege in such containers could execute arbitrary
commands on the host via the containerd-shim socket and thus
breaking the container isolation.

Another popular low-level runtime named runC also intro-
duces a container escape vulnerability when resolving magic
links. This vulnerability (assigned CVE-2019-5736) allows
attackers in containers to open the runc or docker-runc

binary on the host and overwrite it with arbitrary com-
mands. Actually, the link resolution in container is error-prone,
causing another vulnerability CVE-2021-30465 in directory
traversing. By exploiting these CVEs, the attacker can easily
escape from the container.
Kata container vulnerabilities. Virtualized containers lever-
age the hardware virtualization techniques to reinforce the
container isolation. Therefore, people consider that they are
more secure than native containers. Unfortunately, security
researchers demonstrated that it is also possible to escape from
the Kata virtualized containers.

More specifically, Kata containers do not enforce the device
cgroups, giving the attacker chances to access the /dev

files on the guest virtual machine, leading to CVE-2020-
2023. The attacker can exploit this CVE to overwrite the
underlying kata-agent. Moreover, the Kata container reuses
the corrupted kata-agent, leading to CVE-2020-2025. In
addition, kata-runtime does not check the validity of the
mount point in the shared folder; it resolves any symbolic
link and conducts the mount operation, leading to CVE-
2020-2026. With these vulnerabilities, attackers within Kata
containers could masquerade as kata-agent and create a
symbolic link at the mount point. Root file system of the new
container will be mounted to anywhere on the host pointed to
by the symbolic link. In this way, the attacker can break the
virtualized container, even though the hardware virtualization
techniques are in use.

2) Resource Exhaustion Attacks: Besides the software vul-
nerabilities, the container layer also suffers from resource ex-
haustion attacks. Zhou et al. revealed that the inter-component
communication in Docker is able to break the CPU usage
constraint of containers and consume 7× of CPU than that is
allowed [21]. Besides, Xiong et al. also showed that the IP
addresses of the host machine in function-as-a-service (FaaS)
platforms can be exploited to cause IP-blockages of benign
functions [22].

3) Insecure Configurations: Container engines and run-
times could be configured with different options and arguments
for various use cases. Some of these configurations might
be sensitive and the mis-configuration introduces security
problems. For example, Docker daemon configured to listen on
remote TCP socket without authentication could be exploited
by attackers to control the host by creating new malicious
privileged containers. Daemon listening locally tends to be
more secure, but it could be exploited by DNS rebinding or
host rebinding [23] as well. Even in the case where Docker



daemon only listens on a local UNIX socket, if non-privileged
users are added into the docker group, they could exploit
this UNIX socket to escalate privilege by creating privileged
containers.

Currently, Docker provides different kinds of sensitive con-
figurations via docker run commands, as discussed below.
For runtime privilege and Linux capabilities. Docker
supports four docker run commands for specifying run-
time privilege and Linux capabilities. More specifically,
--cap-add adds Linux capabilities while --cap-drop drops
Linux capabilities; --privileged grants the running in-
stances the root privilege; --device adds specified devices to
the running container instance. Unfortunately, those commands
can be easily misused to grant the container excessive privi-
leges or capabilities, threatening the security of the container
systems.
For runtime resources isolation. Docker also provides run
commands for supporting Linux namespaces, including --pid

for the PID namespace; --uts for the UTS namespace; --ipc
for the IPC namespace; --network for the network names-
pace; --userns-remap for the user namespace. However,
Docker allows a container to share the host namespaces by
specifying the parameter as the host one (i.e., --pid=host).
These sharing configurations bypass the isolation of Linux
namespaces, undermining the container security.
For runtime resources constraints. Docker provides 20+ run
commands to support Linux cgroups for resource constraints,
including --cpu-shares for CPU shares, --memory for
memory limit, --device-read-bps for read rate limit from
a device, and --device-write-bps for write rate limit to
a device. It is suggested to use as many cgroups as possible
to defend against resource exhaustion attacks from malicious
container users. Moreover, these cgroups also add another se-
curity defense layer against malicious container. For example,
the Kata container did not enforce the device cgroups, giving
the attacker chances to write to the hard drive of the guest
virtual machine directly (CVE-2020-2023).
For security configuration. Docker provides
--security-opt commands to allow users to specify
additional security configurations for the container
instances, including enforcing mandatory access control
mechanisms, preventing from gaining new privileges
and configuring seccomp profile. Those configurations
are critical to the container security. Therefore, it is
recommended to enforce those security configurations.
However, Docker allows to turn off seccomp by specifying
--security-opt="seccomp=unconfined", which
undermines the container security.

C. Orchestration Layer Weaknesses

The container orchestration tool faces security threats from
multiple aspects, including vulnerabilities, insecure configura-
tions, and weak network isolation. We focus on Kubernetes in
this section.

1) Orchestration Tool Vulnerabilities: Vulnerabilities of or-
chestration tool leads to privilege escalation, container escape,

and denial of services.
Privilege escalation vulnerabilities. The attackers may ex-
ploit vulnerabilities to execute any commands to escalate their
privileges. For example, the API server mishandles the for-
warding connections to backend, giving the attacker chances to
execute arbitrary commands in the pods (CVE-2018-1002105).
Moreover, an attacker might exploit vulnerabilities to escalate
the privilege of one node to the privilege of the whole cluster.
For instance, the API server fails to validate the redirection
of upgrade requests correctly, leading to CVE-2020-8559. As
a result, the attacker can redirect and execute commands on
other nodes.
Container escape vulnerabilities. Vulnerabilities of Kuber-
netes may also lead to container escape. For example, the
symbolic links are resolved on the host before mounted into
containers, allowing the attacker to access directories outside
of the container (CVE-2017-1002101). Actually, the patch [24]
is not complete and leads to the time-of-check-to-time-of-use
(TOCTOU) attacks. A new CVE-2021-25741 was assigned.
Moreover, the kubectl cp command introduces the similar
issues with docker cp command (discussed in §IV-B1),
leading to CVE-2019-1002101, CVE-2019-11246, CVE-2019-
11249, and CVE-2019-11251. By exploiting these vulnerabil-
ities, malicious users in a container can create or overwrite
files outside of the container.
Denial of service vulnerabilities. Kubernetes contains several
denial of service (DoS) vulnerabilities. The Golang HTTP/2
implementations used by the API server is vulnerable to
the ping flood and reset flood attacks, causing CVE-2019-
9512 and CVE-2019-9514. Moreover, the API server does
not validate the input YAML files properly. As a result,
when parsing a specially-crafted YAML files, the API server
consumes excessive amounts of CPU and memory, leading to
DoS attacks (CVE-2019-11253).

2) Weak Network Isolation: It is challenging to secure
network within a Kubernetes cluster. For example, in the multi-
tenancy scenario, one compromised pod can send malicious
traffic to other pods. Moreover, one compromised node could
also send malicious traffic to other nodes. In addition, the
cluster network is actually maintained by Container Network
Interface (CNI) plugins in different network layers relying on
different techniques. As a result, potential threats in all these
layers and techniques might undermine the confidentiality,
integrity and availability of the network in the cluster. It has
been shown that clusters with CNI plugins working on data
link layer (layer 2) are potentially vulnerable to ARP or DNS
spoofing by default. Plugins utilizing BGP routing protocols
suffer from BGP hijacking problem, which is a practical threat
to a Kubernetes cluster [25].

D. Container Image Weaknesses

As shown in Figure 1, the container engine loads a container
image to the runtime to initiate a container instance. As such,
the security of the container environment also depends on
container images.



1) Software Vulnerabilities: A container image is a col-
lection of binaries, packages and other dependencies that are
needed to deploy a container environment. However, these bi-
naries and packages may contain vulnerabilities. For example,
researcher revealed that both official and community Docker
images contain more than 180 vulnerabilities on average
when considering all versions [26]. Moreover, researchers also
showed that the certified and verified repositories introduced
by Docker do not improve the overall image security. While
the average number of unique vulnerabilities found across
repositories are expected to grow with 105 vulnerabilities per
year [27].

2) Malicious Images: Beside the unintended software
vulnerabilities, the container images may also contain the
purposely-introduced malicious software. Security researchers
have identified crypto-mining related malicious images on the
Docker hub [28]. Researchers also detected 42 malicious im-
ages from the Docker hub using VirusTotal malware scanning.

V. CURRENT PROTECTION STATUS AND FUTURE
DIRECTIONS

In this section, we summarize current protection efforts on
container security. We further analyze limitations of current
protection and point out future research directions.

A. Isolating Kernel Layer

Besides hardening the kernel [29]–[31], researchers and
developers in Linux kernel and the container communities have
developed different schemes for isolating kernel weaknesses.

1) New Namespaces: Researchers have proposed the secu-
rity namespace, allowing containers to have an autonomous
control over their security mechanisms, such as Integrity
Measurement Architecture (IMA) and AppArmor [32]. More
recently, Linux kernel developer submitted the patches for a
new kernel namespace mechanism named CPU namespace,
which isolates CPU information by creating a scrambled
virtual CPU map [33]. CPU namespace enables that every
virtual namespace CPU maps to a physical CPU. Therefore,
both the control and display interfaces are CPU namespace
context aware. In this way, a process can only get resource
view via a virtual CPU map, which reduces potential leaks
from /proc.

2) Sandboxed Container: Besides kernel mechanisms, con-
tainer community also proposed sandboxed container solutions
to isolate kernel vulnerabilities. The most well-known sand-
boxed solutions is gVisor developed by Google. Instead of
running containers on the shared kernel directly, gVisor runs
a container on a dedicated user-space kernel, called Sentry. For
security reasons, Sentry intercepts and handles most syscalls
from containers. Therefore, Sentry reduces the syscalls that
can be invoked on host kernel from containers, and thus
reducing the attack surface. Such defense-in-depth strategy
improves container security. However, Sentry still needs to
invoke 50+ system calls to serve its needs, which undermines
the isolation between Sentry and the host kernel.

3) Virtualized Container: Beside the sandbox container.
container community also leverages hardware virtualization
techniques to improve the overall security of container sys-
tems. One example is the Kata container, which runs the
container instance inside a virtual machine instance [34]. The
virtual machine guarantees the strong isolation while the guest
kernel is pruned to reduce the performance overhead.

4) Future Directions: Currently, containers rely on Linux
mechanisms, such as namespaces and cgroups, to isolate and
limit resource usages. However, the security and effectiveness
of those mechanisms have never been studied systematically.
The prior work has demonstrated that the father PID names-
pace mirrors any PIDs in the children namespaces. As a
result, the attacker can easily break the isolation of PID
namespace and exhaust all PIDs on the shared kernel, crashing
other containers [5]. Therefore, one should not blindly trust
the container related kernel mechanisms. More analysis on
namespaces and cgroups is required to fully understand their
effectiveness.

B. Hardening Container Layer

Researchers and developers provide plenty of best practices
for protecting the container layer.

1) Enforcing Least-privileged: As mentioned before, native
containers share the host permissions. Therefore, to improve
security, one needs to reduce their privilege as much as pos-
sible. As such, people proposed to enforce least privilege for
the container. More specifically, it is suggested not to use the
--privileged parameter when running a Docker container.
Moreover, containers should drop as many capabilities as
possible and only keep the capabilities that are necessary
to the container functionalities. Also, the container should
set --security-opt=no-new-privileges to prevent the
container from obtaining any new privileges. By dropping
capabilities, the container can block a considerable amount
of kernel vulnerabilities [15]. In addition, for the necessary
capabilities, the container should further leverage the user
namespace to constrain the capabilities to its namespace only,
rather than the root namespace on the host.

2) Adopting More Security Measures: Linux kernel pro-
vides 8 namespaces for resource isolation and 13 cgroups for
resource constraint. Therefore, it is suggested to adopt as many
namespaces and cgroups as possible to isolate and limit the
container resource usage. However, current container engines
only have partial support on Linux namespaces and cgroups,
leading to security weak spots.

Moreover, the container can adopt mandatory access control
mechanisms, such as AppArmor, to enforce customized and
fine-grained access control for each container instance. In
addition, containers should also use seccomp to block sensitive
system calls to further improve the security.

3) Checking Configuration: Container developers also
build tools to automatically detect the insecure configurations
in the container cloud. For example, Docker provides docker-
bench-security tool to check dozens of insecure container



configurations. The tests are automated. However, docker-
bench-security tool requires the root privilege, cannot be used
to check the non-root containers.

4) Future Directions: For functionality support, cur-
rent OCI Runtime Specification still allows 14 capabili-
ties, including dangerous ones, such as AP_SETUID and
CAP_SETFCAP [35]. These capabilities might allow privilege
escalation as discussed by grsecurity [36]. Therefore, whether
those allowed capabilities will cause security problem is
still an open question. More research works are needed to
understand the security impacts of these capabilities.

Moreover, researchers have developed an open-source tool
named Metarget [37], which could deploy most of aforemen-
tioned vulnerabilities in this paper. Metarget is helpful for
security researchers to study the vulnerabilities and further
come up with more robust defense solutions.

C. Securing Orchestration Layer

Researchers and developers have proposed hardening guid-
ance and techniques to secure orchestration layer.

1) Secure Configuration: Many Kubernetes security best
practices have been released to guide people to configure
and use Kubernetes securely. Among which, CIS Benchmark
for Kubernetes [38], released by Center for Internet Secu-
rity (CIS), serves as one of the most detailed configuration
guidance for Kubernetes. Besides, the recently published Ku-
bernetes Hardening Guidance by NSA and CISA [39] gives
practical measures on security of pod and cluster network,
access control, audit and upgrading.

2) Network Reinforcement: In Kubernetes multi-tenant en-
vironments, both inter-node communications and even inter-
pod communications on the same node could be malicious.
To mitigate such potential attacks, one of the best practices
is to follow the principle of least privilege and drop the
CAP_NET_RAW capability of pods. Another method is to adopt
novel technique to validate packet routes in the cluster [40]. In
this way, man-in-the-middle attacks (MITM) like ARP spoof-
ing could be mitigated. Besides, many open-source container
network plugins (CNI), like Calico and Cilium, support fine-
grained network policies, which makes it easy to control traffic
between pods and network endpoints. Especially, based on
the extended Berkeley Packet Filter (eBPF), Cilium supports
flexible security actions on network traffic. Nam et al. also
proposed and implemented a security-enforced network stack
named BASTION, which provides visibility and control over
inter-container traffic utilizing eBPF and XDP [41].

3) Future Directions: The pod security policy (PSP) in Ku-
bernetes is hard to use and has been deprecated in Kubernetes
1.21 [42]. At the same time, new external controllers have
been proposed, such as K-Rail, Kyverno and OPA/Gatekeeper.
However, it still remains unclear whether those successors will
be effective in the security enforcement of pods in Kubernetes.

D. Securing Container Images

Researchers have proposed different techniques to secure
container images.

1) Image Scan: Researchers proposed to use images scan
to reduce software vulnerabilities in container images. Open-
source tools like Trivy [43], Anchore [44], and Clair [45]
can be used standalone or integrated into the continuous
integration process to scan container images. They provide
detailed reports about how many vulnerabilities one container
image contains. However, because of differences of vulnera-
bilities data sets, different scanners might generate different
scan reports for the same container image. Berkovich et al.
proposed a benchmark for evaluating image scanners [46],
with which users could select the most suitable scanner for
their environments.

2) Image Signature: Digital signature is a traditional but
effective way to defeat tampering and ensure the integrity of
container images. In a container environment, Docker content
trust (DCT) [47] mechanism provides publishers with the
ability to sign their images and users with the ability to verify
images. The functions are implemented in Notary [48], an
open-source project. Besides, developers also implemented an
admission controller to integrate Kubernetes with the image
signature functionalities, based on Notary [49].

3) Future Directions: Image debloating not only reduces
image sizes and runtime costs, but also shrinks the attack
surfaces, and thus becomes a promising technique. Several
research works have proved its practicality. CDE [50] gives the
first try to find dependencies of an application. It uses ptrace
to dynamically probe the application’s necessary resources.
Cimplifier [51] leverages syscall logs to identify resources
needed by different applications in a container. It then par-
titions the container into multiple smaller ones based on the
analysis. However, these methods analyze runtime behaviors
and may miss some dependencies. How to debloat container
images reliably and effectively is still an open question.

VI. CONCLUSION

This paper presents a comprehensive study on security
challenges of the container system in the cloud. In this study,
we first divide the container system into three layers according
to their functionalities, including the kernel layer, the container
layer, and the orchestration layer. We then summarize security
related techniques and discuss the security challenges for each
layer. Finally, we present the current protection status for the
container cloud and point out several research directions for
the future work.

Our study shows that to improve the container cloud secu-
rity, we need to design and implement more robust kernel
isolation mechanisms, conduct systematic security analysis
on existing container techniques, and develop comprehensive
configuration checking tools. More research works are needed
on those topics.

REFERENCES

[1] C. N. C. Foundation, “Cloud native survey 2020,” https://www.cncf.io/
wp-content/uploads/2020/11/CNCF Survey Report 2020.pdf, 2020.

[2] “Container runtime and lifecycle,” https://github.com/opencontainers/ru
ntime-spec/blob/master/runtime.md, August 2021.

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://github.com/opencontainers/runtime-spec/blob/master/runtime.md
https://github.com/opencontainers/runtime-spec/blob/master/runtime.md


[3] “Docker run reference,” https://docs.docker.com/engine/reference/run/#r
untime-privilege-and-linux-capabilities.

[4] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Contain-
erleaks: Emerging security threats of information leakages in container
clouds,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE Computer Society,
2017, pp. 237–248.

[5] N. Yang, W. Shen, J. Li, Y. Yang, K. Lu, J. Xiao, T. Zhou, C. Qin,
W. Yu, J. Ma, and K. Ren, “Demons in the shared kernel: Abstract
resource attacks against os-level virtualization,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer Communications Security,
CCS 2021, November 15-19, 2021. ACM, 2021.

[6] Kubernetes, “Kubernetes components,” https://kubernetes.io/docs/conce
pts/overview/components/.

[7] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic policy
generation for inter-service access control of microservices,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021.

[8] Opencontainers, “Oci image format specification,” https://github.com/o
pencontainers/image-spec#oci-image-format-specification.

[9] “namespaces - linux namespaces,” https://man7.org/linux/man-pages/m
an7/namespaces.7.html.

[10] “cgroups - linux control groups,” https://github.com/torvalds/linux/blob
/master/Documentation/admin-guide/cgroup-v2.rst.

[11] “seccomp - linux seccomp,” https://man7.org/linux/man-pages/man2/se
ccomp.2.html.

[12] Y. Avrahami, “Escaping virtualized containers,” https://i.blackhat.com/U
SA-20/Thursday/us-20-Avrahami-Escaping-Virtualized-Containers.pdf,
2020.

[13] Kubernetes, “Using rbac authorization,” https://kubernetes.io/docs/refer
ence/access-authn-authz/rbac/.

[14] ——, “Kubernetes namespaces,” https://kubernetes.io/docs/concepts/ov
erview/working-with-objects/namespaces/.

[15] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on linux container security: Attacks and countermeasures,” in Pro-
ceedings of the 34th Annual Computer Security Applications Conference,
2018, p. 418–429.

[16] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s escape:
Breaking the resource rein of linux control groups,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019. ACM, 2019,
pp. 1073–1086.

[17] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public au-
diting for data storage security in cloud computing,” in IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2010.

[18] H. Li, Y. Yang, Y. Dou, J.-M. J. Park, and K. Ren, “Pedss: Privacy
enhanced and database-driven dynamic spectrum sharing,” in IEEE
Conference on Computer Communications (INFOCOM). IEEE, 2019.

[19] A. Yelam, S. Subbareddy, K. Ganesan, S. Savage, and A. Mirian,
“Coresident evil: Covert communication in the cloud with lambdas,” in
Proceedings of the Web Conference 2021, ser. WWW ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1005–1016.

[20] Y. Avrahami and A. Zelivansky, “In-and-out - security of copying to and
from live containers,” https://osseu19.sched.com/event/TLC4/in-and-ou
t-security-of-copying-to-and-from-live-containers-ariel-zelivansky-yuv
al-avrahami-twistlock, 2019.

[21] T. Zhou, W. Shen, N. Yang, J. Li, C. Qin, and W. Yu, “Analysis of
dos attacks on docker inter-component stdio copy,” Chinese Journal of
Netword and Information Security, vol. 6, no. 6, 2020.

[22] J. Xiong, M. Wei, Z. Lu, and Y. Liu, “Warmonger: Inflicting denial-
of-service via serverless functions in the cloud,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer Communications Security,
CCS 2021, November 15-19, 2021. ACM, 2021.

[23] M. Cherny and S. Dulce, “Well, that escalated quickly! how abusing
docker api led to remote code execution, same origin bypass and
persistence in the hypervisor via shadow containers,” https://www.bl
ackhat.com/docs/us-17/thursday/us-17-Cherny-Well-That-Escalated-
Quickly-How-Abusing-The-Docker-API-Led-To-Remote-Code-Exec
ution-Same-Origin-Bypass-And-Persistence wp.pdf, 2017.
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