
Demons in the Shared Kernel: Abstract Resource Attacks Against
OS-level Virtualization

Nanzi Yang∗
Xidian University

Xi’an, China

Wenbo Shen∗†
Zhejiang University

Key Laboratory of Blockchain and
Cyberspace Governance of Zhejiang

Province
Hangzhou, China

Jinku Li
Xidian University

Xi’an, China

Yutian Yang
Zhejiang University
Hangzhou, China

Kangjie Lu
University of Minnesota, Twin Cities

Minneapolis, USA

Jietao Xiao
Xidian University

Xi’an, China

Tianyu Zhou
Zhejiang University
Hangzhou, China

Chenggang Qin
Ant Group

Hangzhou, China

Wang Yu
Ant Group

Hangzhou, China

Jianfeng Ma
Xidian University

Xi’an, China

Kui Ren
Zhejiang University
Hangzhou, China

ABSTRACT
Due to its faster start-up speed and better resource utilization ef-
ficiency, OS-level virtualization has been widely adopted and has
become a fundamental technology in cloud computing. Compared
to hardware virtualization, OS-level virtualization leverages the
shared-kernel design to achieve high efficiency and runs multiple
user-space instances (a.k.a., containers) on the shared kernel.

However, in this paper, we reveal a new attack surface that
is intrinsic to OS-level virtualization, affecting Linux, FreeBSD,
and Fuchsia. The root cause is that the shared-kernel design in
OS-level virtualization results containers in sharing thousands of
kernel variables and data structures directly and indirectly. Without
exploiting any kernel vulnerabilities, a non-privileged container
can easily exhaust the shared kernel variables and data structure
instances to cause DoS attacks against other containers. Compared
with the physical resources, these kernel variables or data structure
instances (termed abstract resources) are more prevalent but under-
protected.

To show the importance of confining abstract resources, we con-
duct abstract resource attacks that target different aspects of the
OS kernel. The results show that attacking abstract resources is

∗Co-first authors.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484744

highly practical and critical. We further conduct a systematic anal-
ysis to identify vulnerable abstract resources in the Linux kernel,
which successfully detects 1,010 abstract resources and 501 of them
can be repeatedly consumed dynamically. We also conduct the at-
tacking experiments in the self-deployed shared-kernel container
environments on the top 4 cloud vendors. The results show that
all environments are vulnerable to abstract resource attacks. We
conclude that containing abstract resources is hard and give out
multiple strategies for mitigating the risks.

CCS CONCEPTS
• Security and privacy → Virtualization and security.

KEYWORDS
OS-level Virtualization; Shared Kernel; Abstract Resource Attack

ACM Reference Format:
Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao Xiao,
Tianyu Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, and Kui Ren. 2021.
Demons in the Shared Kernel: Abstract Resource Attacks Against OS-
level Virtualization. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea.. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3460120.3484744

1 INTRODUCTION
Operating-system-level virtualization (a.k.a., OS-level virtualiza-
tion) allows multiple self-contained and isolated user-space envi-
ronments to run on the same kernel [67]. Compared to hardware
virtualization (i.e., virtual machines), OS-level virtualization elim-
inates the burden of maintaining an operating system kernel for
each user-space instance and thus has a faster start-up speed and

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

764

https://doi.org/10.1145/3460120.3484744
https://doi.org/10.1145/3460120.3484744

better resource utilization efficiency. Therefore, OS-level virtual-
ization has been widely adopted in recent years and has become
a fundamental technology in cloud computing. The user-space in-
stances in OS-level virtualization are named as jails in FreeBSD [33],
Zones in Solaris [59], and containers1 in Linux [67].

Despite its high efficiency, OS-level virtualization also introduces
multiple security concerns. First, OS-level virtualization is vulner-
able to kernel vulnerabilities due to the shared kernel [40]. As a
result, it cannot isolate kernel bugs. Once the shared kernel is com-
promised, all user-space instances (referred to as containers) lose
isolation and protection. Moreover, researchers recently questioned
the isolation of container techniques, such as information leaks [22],
covert channels [24], and out-of-band workloads that break control
groups [23].

However, in this paper, we reveal a new attack surface that is
intrinsic to OS-level virtualization. Compared to hardware virtual-
ization, OS-level virtualization leverages the shared-kernel design
to achieve high efficiency. In a typical OS-level virtualization envi-
ronment, containers run on the same OS kernel and request various
services via 300+ system calls. Notice that the underlying OS kernel
contains hundreds of thousands of variables and data structure
instances to provide services for containers. As a result, these con-
tainers are directly and indirectly sharing these kernel variables and
data structure instances.

Unfortunately, these shared kernel variables and data structure
instances are new attack surfaces in OS-level virtualization. With-
out exploiting any vulnerabilities, a non-privileged container can
easily exhaust certain kernel variables and data structure instances,
causing DoS attacks in OS-level virtualization environments. As a
result, even other containers have enough physical resources, with
the kernel critical variables or data structure instances being ex-
hausted, they still cannot perform any meaningful tasks. Compared
with the physical resources supported by the real hardware, we
regard these kernel variables or data structure instances as abstract
resources and the exhaustion attacks on these resources as abstract
resource attacks.

Though abstract resources can be exploited for DoS attacks, they
are often under-protected. The kernel and container developers
focus more on protecting physical resources rather than abstract
resources. For example, the Linux kernel provides control groups to
restrict the resource usages for each container instance. However,
among 13 control groups, 12 of them are for physical resources,
restricting the usages of CPU, memory, storage, and IO. Only the
PIDs control group is designed for limiting the abstract resource
pid. As a result, hundreds of container-shared abstract resources do
not have any restrictions, such as the global dirty ratio, open-file
structs, and pseudo-terminal structs, which makes them vulnerable
to DoS attacks.

To show the criticality of confining abstract resources on OS-
level virtualization, we conduct attacks using Docker containers on
the Linux kernel, targeting abstract resources on different aspects
of the operating system services, including process management,
memory management, storage management, and IO management.
Our experiments show that attacking abstract resources is highly

1In this paper, we use the container to refer to the self-contained user-space execution
environment that shares the kernel of the host system.

practical and critical—it can easily disable new program execution,
slow down the memory writes by 97.3%, crash all file-open related
operations, and deny all new SSH connections. Evenworse, it affects
all aspects of OS services. Moreover, experiments also demonstrate
that other than Linux, FreeBSD and Fuchsia are also vulnerable to
abstract resource attacks.

It is unfortunate that even though abstract resources are criti-
cal, they are inherently hard to contain for several fundamental
reasons. First, it is impractical to enumerate all possible abstract
resources in operating system kernels. Different from the few phys-
ical resource types, abstract resource types in the kernel are many
and various. Second, it is fairly easy to form conditions leading to
abstract resource exhaustion. When implementing new features
in the kernel, developers are often concerned about the physical
resource consumption while paying much less attention to abstract
resource consumption. Moreover, the OS kernel has complex data
and path dependencies, leading to various ways to exhaust abstract
resources in the kernel.

Therefore, we design and implement a tool based on LLVM to
identify vulnerable abstract resources in the Linux kernel systemat-
ically. We propose new techniques to identify the shareable abstract
resources and analyze their container controllability. We apply our
tool to the latest Linux kernel and detect 1,010 abstract resources.
501 of them can be repeatedly consumed dynamically. From the
detected abstract resources, we pick 7 resources that affect each
aspect of OS services based on our familiarity (i.e., we know the
impacts of exhausting that resource). We further conduct the attack-
ing experiments on these selected resources in the shared-kernel
container environments deployed on the top 4 cloud vendors, in-
cluding AWS, MS Azure, Google Cloud, and Alibaba Cloud. The
results show that all environments are vulnerable to our attacks.
At last, we give out multiple strategies for mitigating the risks of
abstract resource attacks.

The contributions of this paper are as follows:
• New Attack Surface: We reveal a new attack surface that is
intrinsic to OS-level virtualization. We propose a new attack
called abstract resource attack. We demonstrate that the abstract
resource attack is highly practical and is a broad class of attacks
that affect Linux, FreeBSD, and Fuchsia.

• Systematic Analysis: We design and implement a static analy-
sis tool based on LLVM to identify vulnerable abstract resources
in the Linux kernel. We propose and implement novel tech-
niques, including configuration-based analysis and container-
controllability analysis. Our tool detects 501 abstract resources
that can be dynamically and repeatedly triggered in the Linux
kernel.

• Practical Evaluation:We evaluate 7 abstract resource attacks in
the self-deployed shared-kernel container environments on AWS,
MS Azure, Google Cloud, and Alibaba Cloud. All environments
are vulnerable to abstract resource attacks. 2 In particular, two
environments are vulnerable to 6 attacks, one environment is
vulnerable to 5 attacks, and the other is vulnerable to 4 attacks.
We responsibly disclosed our findings to all cloud vendors. All of
them confirmed the identified problems.

2Current public cloud vendors do not provide the shared-kernel containers to different
users directly. Containers in public cloud are usually isolated by virtual machines.

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

765

• Community Impact: We plan to open-source our tool and
the identified abstract resources at https://github.com/ZJU-SEC/
AbstractResourceAttack, so that they can help the Linux kernel
community and the container community to identify the weak
spots of resource isolation in OS-level virtualization.

2 BACKGROUND
OS-level virtualization relies on the underlying OS kernel for re-
source isolation and containment. More specifically, the Linux ker-
nel provides namespaces for resource isolation and control groups
for resource containment.

2.1 Linux Namespaces
Linux namespaces provide process-level resource isolation. Cur-
rently, Linux namespaces are divided into 8 types. According to
their release time, we list them as follows:
• Mount for file system isolation;
• UTS for hostname and domain name isolation;
• IPC for IPC and message queue isolation;
• PID for process ID isolation;
• Network for network resource isolation;
• User for UID/GID isolation;
• Cgroup for control group isolation;
• Time for clock time isolation.

A process can be assigned to different namespaces of different
types. But for each type, it can only belong to one namespace. By
default, a process is in the same namespaces as its parent. It can
be added to a new namespace during process creation by passing
specific flags, or during process running by calling the setns system
call. Ideally, only processes within the same namespace can share
the namespace isolated resources. Resources are thus isolated across
namespaces. As a result, running out of an isolated resource in one
namespace does not affect processes in other namespaces. Such a
design inherently requires that the namespace mechanism correctly
and thoroughly contains the resources.

However, there still exist hundreds of types of abstract resources
that are not included by namespaces. The large attacking surface
still exists even with the protection of namespaces. One may ar-
gue to isolate all the abstract resources using namespaces. This is
however impractical: the huge number and flexibility of abstract
resources make the solution unacceptable due to huge code changes
and high performance overhead.

2.2 Linux Control Groups
On the other hand, Linux control groups are used to limit resource
usages. A control group accounts for resources used by all pro-
cesses within that control group. Control groups are organized as
a tree structure, where resources accounted for children are also
accounted for their parents. The limits on resource usages are also
enforced recursively on the tree so that resource usages in a control
group should not exceed the limits of all its ancestors.

Control groups mainly manage hardware resources like CPU,
memory, storage, IO, and etc. There are two versions of control
groups, namely v1 and v2. The main difference is that control group
v1 can have a tree hierarchy for each type of resources while control
group v2 has only one hierarchy. The implementation of resource

accounting and resource usage limiting has little difference between
v1 and v2, though. Control group v1 is currently used by default
because it is more stable and provides control over more resources.
It manages 13 types of resources while v2 supports only 9 resource
types until now [44]. More specifically, among the 13 types of re-
sources, 5 of them are for CPU accounting, including cpu, cpuacct,

cpuset, freezer, perf_event; 3 of them are for memory, including
memory, hugetlb, rdma; blkio is for storage; and 3 are for IO, in-
cluding devices, net_cls, net_prio. Only PIDs control group are
for the abstract resource of PID.

While limiting the usages of shared abstract resources in con-
tainer processes can mitigate DoS attacks, it is again impractical to
extend control groups to include all abstract resources. Accounting
resources and enforcing limits on so many types of resources will
introduce unacceptable overhead.

3 ABSTRACT RESOURCE ATTACKS
In this section, we first clarify the threat model and assumptions.
Next, we discuss weaknesses in the container isolation. Finally,
we show that abstract resource attacks also work on FreeBSD and
Fuchsia kernels.
Threat model and assumptions. In this paper, as we are target-
ing OS-level virtualization, we assume the containers are running
on the same shared kernel. Containers enforce state-of-the-art pro-
tection and follow the most security practices in deployment. More
specifically, containers are running as different non-root users with
all capabilities dropped. While the kernel is enforcing as many
namespaces and control groups as possible for the container. More-
over, the kernel is also using seccomp to block sensitive system
calls. We further assume that the kernel has no bugs and all security
mechanisms are working properly.

On the other side, the attacker controls one container and at-
tempts to disrupt other containers running on the same kernel. The
attacker can run any code within the container and call seccomp
allowed system calls. However, he/she is not allowed to exploit ker-
nel vulnerabilities. Furthermore, the attacker is in a non-privileged
container as a non-root user, with no capabilities at all. Finally,
the attacker is not allowed to escalate the privilege or regain any
capabilities. In the following, we show that due to shared abstract
resources in the kernel, even such an attacker still can launch DoS
attacks to other containers.

3.1 Weaknesses in OS-level Virtualization
In OS-level virtualization, containers are directly and indirectly
sharing thousands of kernel abstract resources, which makes them
vulnerable to resource-exhaustion attacks. We leverage an exam-
ple in the Linux kernel to illustrate the details. Figure 1 shows
the global variable nr_files and function alloc_empty_file in the
Linux kernel. alloc_empty_file allocates struct file (line 17). For
each allocated struct file, nr_files accounts it by increasing the
counter (line 19). In the host Linux kernel, the total number of
struct file is limited by files_stat.max_files (line 13). If the
limit is reached, the alloc_empty_file returns an error (line 23).
However, the Linux kernel does not provide any namespaces or
control groups to isolate or limit nr_files. As a result, nr_files
is directly controllable to all containers—any allocation of struct

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

766

https://github.com/ZJU-SEC/AbstractResourceAttack
https://github.com/ZJU-SEC/AbstractResourceAttack

1 static struct percpu_counter nr_files __cacheline_aligned_in_smp;
2
3 static long get_nr_files(void)
4 {
5 return percpu_counter_read_positive(&nr_files);
6 }
7
8 struct file *alloc_empty_file(int flags, const struct cred *cred)
9 {
10 static long old_max;
11 struct file *f;
12
13 if (get_nr_files() >= files_stat.max_files &&

!capable(CAP_SYS_ADMIN)) {↩→
14 ...
15 goto over;
16 }
17 f = __alloc_file(flags, cred);
18 if (!IS_ERR(f))
19 percpu_counter_inc(&nr_files);
20 ...
21 over:
22 ...
23 return ERR_PTR(-ENFILE);
24 }

Figure 1: Linux kernel source of nr_files. nr_files is a global
variable shared by all containers. For each allocated struct

file, nr_files increases by 1 (line 19).

file from any container increases the same shared global variable
nr_files.

Such a sharing of nr_files leads to a new attack. In Linux, ev-
erything is a file. So many operations, such as file open, process
creation, pipe creation, new network connection creation, even
the timer creation (timerfd_create) and event generation (eventfd),
increase nr_files. A malicious container can pop nr_files to its up-
per limit easily. Actually, in our experiment, the quota of nr_files
can be quickly exhausted in several seconds. Consequently, all op-
erations that consume struct file will fail. The impact is severe:
the victim-container cannot even run a command (as it needs to
open a command file) or exec a new binary, leading to program
crashes. From the above example, we find that even the container
has enough physical resources, such as CPU or memory, it still
cannot run any new programs without the quota in nr_files.

To demonstrate that abstract resource attacks affect all kernel
functionalities, we present one abstract resource attack for each as-
pect of the Linux kernel functionalities, including process, memory,
storage, and IO management [21]. In this section, we present the
attack results on the local test environments and defer the attack
results of the top 4 vendors to §5.

For the local test environment setup, the test machine has the
Intel Core i5 CPU, with 8 GB memory and 500 GB HDD, and it runs
Ubuntu 18.04 with Linux kernel v5.3.1. We refer to it as the host-
machine. On the host-machine, we set up two docker containers
using Docker 18.06.0-ce, and use them as attacker-container and
victim-container, respectively. We set up both containers following
the docker security best practices [9, 12, 30], which is running
them in different non-root users, dropping all capabilities, enabling
namespaces and control groups, and applying seccomp system call
blocking, as discussed in the threat model.

3.2 Attacks on Process Management
To implement process management, the Linux kernel has intro-
duced a series of abstract resources, such as process-control-block

1 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
size_t set_tid_size)↩→

2 {
3 ...
4 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, pid_max,

GFP_ATOMIC);↩→
5 ...
6 if (nr < 0) {
7 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
8 goto out_free;
9 }
10 pid->numbers[i].nr = nr;
11 ...
12 }

Figure 2: Linux kernel source of idr allocation.
idr_alloc_cyclic checks the idr against pid_max, return-
ing a negative number idr if goes beyond.

struct task_struct, pid, state and various data structures to sup-
port the derived entities, such as struct thread_info for thread,
struct rq runqueues for scheduling, struct shm_info and struct

msginfo for inter-process communication (IPC), struct spinlock

and struct semaphores for synchronization. In fact, process man-
agement in Linux introduces thousands of abstract resources. In
the following, we introduce the attack against struct idr as an
example.

3.2.1 Attacking idr of PID. The Linux kernel introduces struct

idr for integer ID management. Process management also uses idr
for the pid allocation. Figure 2 shows the alloc_pid function, which
calls idr_alloc_cyclic to get a new pid. idr_alloc_cyclic, in turn,
checks pid_max during the idr allocation and return a negative error
code if the idr grows beyond pid_max. Later we will show that even
with PID namespace and PIDs control group enabled, idr can still
be regarded as a globally shared resource for all processes. Similar
to the fork bomb, a malicious container process can repeatedly fork
to exhaust all idr. As a result, all containers on the shared-kernel
cannot create any new processes or threads.

In our experiments, the attacker-container spawns processes
repeatedly by calling the fork system call. As a result, in the victim-
container, all operations related to new-process creation fail with
an error of “Resource temporarily unavailable”. Even root users on
the host-machine suffer from the same failure.

3.2.2 The effectiveness of the PID namespace. Linux v2.6.24 intro-
duces the PID namespace, which provides processes an independent
set of PIDs from other PID namespaces [47]. However, in the PID
namespace implementation, the Linux kernel allocates an extra PID
in the root PID namespace for any PID allocated in other PID names-
paces, so that all PIDs in the other PID namespaces can be mapped
to the root PID namespace. In other words, the root PID namespace
is still globally shared. As a result, even the attacker-container is in
a separated PID namespace, its PID allocation still exhausts the PID
in the root PID namespace, causing the new-process-create failures
on both the victim-container and host-machine. Therefore, even
with the PID namespace enabled, containers are still vulnerable to
the above idr-exhaustion attack.

3.2.3 The effectiveness of the PIDs control group. The PIDs con-
trol group was also introduced recently in Linux v4.3 [44]. It is
used to limit the total number of PIDs that are allocated in one

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

767

control group. More specifically, the PIDs control group checks
against the process limit during the process forking, and returns
an error and aborts the forking if the total process number in the
PIDs control group (pids_cgroup->counter) reaches the upper limit
(pids_cgroup->limit). PIDs control group is effective in defending
against direct forking. However, it only charges the pid number to
the current process. Similar to the work-delegation approach in [23],
the attacker-container can trick the kernel to fork a large number
of kernel threads, such as frequent aborting to cause the kernel to
spawn interrupt-handling threads. In this way, the idr is exhausted
by kernel threads, which bypasses the restriction enforced by the
PIDs control group.

3.3 Attacks on Memory Management
The Linux kernel introduces various kernel data structures, such
as mm_struct for holding all the memory-related information of a
process, and vm_area_struct for representing the virtual memory
area. Moreover, to improve the reading and writing efficiency, the
Linux kernel also uses the memory as buffers to cache certain data.
Besides, it also introduces the write-back scheme, in which the
writing is done only to the memory. The dirty memory pages will
be written to the disk later by the kernel thread. Using the write-
back scheme, the caller only needs to write to the memory, and it
does not need to wait for the time-consuming disk-IO operations to
finish (i.e., write-through), which significantly improves the write
performance. However, we find that the kernel does not isolate or
restrict the dirty memory area usages, giving the attacker chances
to exhaust all dirty memory, which slows down other containers
significantly. Next, we discuss the attack on dirty memory.

3.3.1 Attacking dirty_throttle_control memory dirty ratio. The
Linux kernel introduces the dirty_throttle_control struct for dirty-
area control, which uses the dirty field to represent the whole
kernel-space dirty ratio. Whenever the dirty value is too high, the
kernel wakes up background threads to sync the dirty memory
to disk. However, in the meantime, as the dirty ratio is too high,
the kernel blocks the write-back and converts all writes to write-
through, which slows down the write performance dramatically.

Unfortunately, the kernel does not provide any isolation for
the memory dirty ratio. Any process can impact the global mem-
ory dirty ratio. In our attack, the attacker-container uses the dd

command to generate files, which quickly occupies all dirty mem-
ory, reaching the memory dirty ratio limit. As a result, all writes
from the host-machine or the victim-container are converted to
write-through, which dramatically downgrades the performance.
In our experiments, the performance of command dd if=/dev/zero

of=/mnt/test bs=1M count=1024 on the victim-container drops from
1.2 GB/s to 32.6MB/s due to the attack, resulting in 97.3% slow down.
Besides, even the privileged root user on the host-machine also has
a 96.1% performance downgrade.

Note that the currently Linux kernel has no namespaces related
to memory management, and memory control groups are used to
limit the memory usage instead of the memory dirty ratio. There-
fore, it cannot defend against the attacks on memory dirty ratio.

3.4 Attacks on Storage Management
The operating system kernel abstracts the disk or other secondary
storage as the file and introduces various file-related abstract re-
sources. In fact, the storage management in the Linux kernel is
complicated, which involves thousands of functions and data struc-
tures. In our experiment, we find that 133 storage-related abstract
resources are reachable from container processes. Unfortunately,
the kernel does not provide any namespaces or control groups to
isolate or restrict the usage of these abstract resources. As a re-
sult, the attacker-container can exhaust these abstract resources to
launch DoS attacks against other containers on the shared kernel.
Next, we illustrate how a malicious container can exploit the file
limit variable nr_files for the DoS attacks.

3.4.1 Attacking nr_files. Asmentioned in §3.1, nr_files is a global
variable in the Linux kernel, which counts the total number of
opened files in the kernel. More specifically, for each allocated
struct file, the kernel increases nr_files by one, as shown in
lines 17-19 of Figure 1. Unfortunately, nr_files is shared among all
processes. It is neither isolated by namespaces nor restricted by any
control groups. As a result, the attacker-container can easily exhaust
nr_files to achieve DoS attacks. To verify the feasibility of this
attack, our attack-container spawns hundreds of processes, each of
which opens 1,024 files. Consequently, nr_files reaches its limit.
As a result, on both the host-machine and the victim-container, all
file-open operations fail, and the kernel issues a warning of “Too
many open files in system.”

Our attack confirms that even with a few hundred of processes,
the attacker is able to exhaust nr_files. While for usability, PIDs
control group usually allows thousands of processes. Therefore,
even with the PIDs control group enabled, the attacker-container
can still DoS-attack nr_files successfully. Even worse, nr_files is
shared among all processes including root and non-root processes.
Therefore, not only are the non-privileged container processes
impacted, the root process on the host-machine cannot perform
any file-open operations either.

3.5 Attacks on IO Management
The IO management is an essential part of an operating system. For
management convenience, the Linux kernel abstracts IO devices
into /dev files and introduces abstract resources, such as tty_struct,
to implement the IO device management. Similar to the previous
cases, these abstract resources are not isolated or limited by any
namespaces or control groups, thus it leads to new attacks. In the
following, we introduce the attacks against pty_count, which causes
DoS to the SSH connection.

3.5.1 Attacking pty_count. The Linux kernel abstracts the pseudo-
terminal (abbreviated as pty) to /dev/ptmx and /dev/pts [46]. At
the meantime, kernel also uses a global variable called pty_count

to count the total number of the opened pseudo-terminal, which
increases by one for each time /dev/ptmx is opened, as shown in line
6 of Figure 3. However, the kernel does not provide any namespaces
or control groups to isolate or limit pty_count usages. Consequently,
the attacker can easily exhaust the pty_count.

In our experiments, the attacker keeps opening /dev/ptmx in the
container to trigger ptmx_open, which calls devpts_new_index and

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

768

1 static atomic_t pty_count = ATOMIC_INIT(0);
2
3 int devpts_new_index(struct pts_fs_info *fsi)
4 {
5 int index = -ENOSPC;
6 if (atomic_inc_return(&pty_count) >= (pty_limit -

(fsi->mount_opts.reserve ? 0 : pty_reserve)))↩→
7 goto out;
8 ...
9 return index;
10 }
11
12 static int ptmx_open(struct inode *inode, struct file *filp)
13 {
14 ...
15 index = devpts_new_index(fsi);
16 ...
17 }

Figure 3: Linux kernel source of pty_count usage. pty_count is
global atomic variables, shared by all containers on the same
kernel.

increases pty_count. In a couple of seconds, the pty_count limit is
reached, and all the following ptmx_open operations fail. The con-
sequences are severe as pty devices are widely used by various
applications such as SSH connection. As a result, all SSH connec-
tion attempts to any other container fail due to the failed pseudo-
terminal-open. Even worse, the host-machine cannot start any new
containers, as the connections to a new container are denied due
to the same error.

3.6 Attacking FreeBSD and Fuchsia Kernels
The root cause of abstract resource attacks is the shared kernel
data (i.e., abstract resources). Next, we demonstrate that the shared
kernel data also makes both the FreeBSD and the Fuchsia vulnerable
to abstract resource attacks.
Attacking FreeBSD. In FreeBSD kernel, following similar resources
in the Linux kernel, we manually identified 5 shared globally ab-
stract resources, namely, dp_dirty_total, numvnodes, openfiles, pid,
and pty. Our experiments further confirm that the former two can
be DoS attacked, while the latter three are limited by rctl per-jail.

The experiments are conducted on the FreeBSD 13.0-RELEASE
with Ezjail-admin v3.4.2 running in a virtual machine with Intel
Core i5 processor, 8GB memory, and 40GB hard disk. Ezjail [53] is
a jail administration framework. The ezjail commands provide a
simple way to create multiple jails using FreeBSD’s jail system. Jails
here are similar to the containers on the Linux. We set up two jails
following the FreeBSD’s handbook [18] and use rctl [54] to limit
per Jail’s resources. We use these two jails as the attacker-jail and
the victim-jail, which is similar to the container setup in §3.1.

For the dirty counter dp_dirty_total, ZFS in FreeBSD introduces
the dsl_pool struct for recording the data of each ZFS pool. The
dsl_pool struct uses the dp_dirty_total field to represent the whole
ZFS pool dirty data. When the dp_dirty_total reaches the limit of
zfs_dirty_data_max, ZFS delays the upcoming writing and waits
for the dirty data to be synchronized to the disk. Unfortunately,
FreeBSD does not provide any isolation for the dp_dirty_total. In
the attacker-jail, we run the command dd if=/dev/zero of=/mnt/test

bs=1M count=1024 (same with the one in §3.3) to exhaust the dirty
total dp_dirty_total. As a result, the victim-jail has a 46% IO per-
formance downgrade.

For the numvnodes, FreeBSD uses a vnode struct to represent a file
system entity, such as a file or a directory. FreeBSD also keeps a
global variable numvnodes to record the total number of vnode in
the whole kernel. And the limit is in maxvnodes. In the experiments,
we can easily exhaust the host-machine’s numvnodes and reach the
maxvnodes limit by repeatedly creating directories in the attacker-
jail.
Attacking Fuchsia. Fuchsia uses the Zircon kernel, which intro-
duces the concept of handle to allow user-space programs to refer-
ence kernel objects [19]. Zircon maintains a global data structure
called gHandleTableArena for allocating all handles. The limit for
handles in the kernel is in kMaxHandleCount. Handles are used very
frequently in Zircon. Surprisingly, we find that the creation of han-
dles is not restricted.We further confirm this problem on the Fuchsia
emulator. A user with basic rights [20] (similar to capabilities in the
Linux) can repeatedly create handles to exhaust all handles, which
leads to the whole system crash. We report this problem to the
Fuchsia developers. They have confirmed this problem, and plan to
fix the problem after identifying more attack vectors to local DoS.

3.7 Summary
From the above discussions, it is easy to see that abstract resource
attacks are highly practical and the consequences are severe. What
makes things worse is that abstract resources are pretty common
in the Linux kernel, affecting every aspect of Linux functionali-
ties. Furthermore, abstract resource attack is intrinsic to OS-level
virtualization. It also works on FreeBSD and Fuchsia kernels.

4 STATIC ANALYSIS OF
CONTAINER-EXHAUSTIBLE ABSTRACT
RESOURCES

As mentioned before, abstract resources are critical to containers.
On the other side, there are thousands of abstract resources, which
makes it virtually impossible to enumerate all of them. In this paper,
we take an initial step to identify exhaustible abstract resources
shared by containers.
Challenges. We need to resolve two challenges. First, it is chal-
lenging to identify meaningful abstract resources, especially those
that are shared in the kernel. An abstract resource in the Linux
kernel can be a variable or a data structure instance. However, not
all variables or data structure instances are meaningful abstract
resources. We need to find the abstract resources that are critical to
the OS functionalities. Moreover, the identified abstract resources
need to be shared between containers so that one container can
exhaust these resources to attack other containers. Unfortunately,
there is no documentation regarding shareable abstract resources.
To address this challenge, we propose configuration-based analy-
sis and access-based analysis to identify various shared abstract
resources in the Linux kernel.

Second, it is challenging to decide if the container can exhaust a
specific abstract resource. Different from regular user-space pro-
grams, resource accesses from a container face more restrictions,
such as namespaces, control groups, and seccomp. Moreover, as
each container runs in a separate user, its resource consumption is
also restricted by the per-user limitation. Thus the simple reach-
ability analysis to the resource consumption sites cannot tell the

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

769

Container
Controllable
Abstract
Resources

Kernel
Source (IR)

Container Controllability Analysis (§4.2)Shareable Abstract Resources
Identification (§4.1)

Shareable
Abstract
Resources

Sensitive
Functions

Syscall
Reachability

Analysis
Access-
based

Analysis

Configuration
-based

Analysis
Per-User

Restriction
Analysis

Namespace
Isolation
Analysis

Seccomp
Restriction
Analysis

Figure 4: The architecture of the analysis tool.

controllability of the container on an abstract resource. For example,
for abstract resources that are isolated by namespaces, even though
the container can consume these abstract resources, it still may not
affect other containers due to the namespace isolation. Therefore,
to overcome this challenge, we propose container controllability
analysis, which includes seccomp restriction analysis, per-user re-
striction analysis, and namespace isolation analysis, to further filter
container-exhaustible resources.

Figure 4 shows the architecture of our tool, which automatically
identifies container-exhaustible abstract resources. The analysis
tool takes kernel source IR as the input. It first identifies all the ker-
nel shareable abstract resources using configuration-based analysis
and access-based analysis in §4.1. Then, it conducts the syscall reach-
ability analysis and container restriction analysis in §4.2, which
includes seccomp, per-user and namespace restriction analysis, to
analyze the container controllability over these abstract resources.
Moreover, we give out the analysis results in §4.3.

4.1 Identification of Kernel Shareable Abstract
Resources

As mentioned before, it is challenging to identify meaningful ab-
stract resources from thousands of kernel variables and data struc-
ture instances. Even harder, to make sure these abstract resources
are directly or indirectly shared between containers, we need to
narrow them down to the shareable kernel abstract resources.

To overcome this challenge, we leverage kernel programming
paradigms and propose configuration-based analysis and access-
based analysis to identify kernel shareable resources.

4.1.1 Configuration-based Analysis. The Linux kernel provides
sysctl interfaces under /proc/sys to allow user-space programs
to configure kernel parameters [49]. Our key observation is that
most of these sysctl configurations are used for abstract resource
limiting, such as limiting the file number fs.file-nr or memory
huge pages vm.nr_hugepages. As a result, all containers are sharing
the same global limit specified by sysctl configurations. Such sysctl
configurations offer important clues about the abstract resources
that are shareable between containers.

Based on the above observation, we propose to identify the
shareable kernel abstract resources using the sysctl configurations,
termed as the configuration-based analysis, which consists of three

1 static struct ctl_table fs_table[] = {
2 ...
3 {
4 .procname = "file-nr",
5 .data = &files_stat,
6 .proc_handler = proc_nr_files,
7 },
8 ...
9 }

10
11 int proc_nr_files(...)
12 {
13 files_stat.nr_files = get_nr_files();
14 ...
15 }
16
17 static long get_nr_files(void)
18 {
19 return percpu_counter_read_positive(&nr_files);
20 }
21
22 struct file *alloc_empty_file(int flags, ...)
23 {
24 ...
25 if (get_nr_files() >= files_stat.max_files &&

!capable(CAP_SYS_ADMIN)) {,!
26 ...
27 goto over;
28 }
29 ...
30 }

① identify sysctl struct

② identify critical variable

③ check critical variable
usages

Figure 5: The sysctl data structures in Linux kernel.

basic steps. First, it uses the specific sysctl data types to identify
all sysctl-related data structures. These data structures contain the
configurable sysctl kernel parameters. Second, the sysctl data struc-
ture usually contains the function that displays the sysctl value
in /proc/sys/ folder. Therefore, by analyzing that function, we are
able to pinpoint the exact variable for this kernel parameter. Finally,
if a kernel parameter is used for restricting resource consumption,
its corresponding variable should appear in comparison instruc-
tions. Therefore, we follow the use-def chain to check the usages
of the identified variable and mark it as an abstract resource if it is
used in a comparison instruction.

We design and implement an inter-procedural analysis pass in
LLVM.We use an example in Figure 5 to illustrate the details. Specif-
ically, the Linux kernel uses the type struct ctl_table to configure
sysctl kernel parameters, such as the file system configurations
in fs_table shown in line 1 of Figure 5. Therefore, the pass first

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

770

traverses all kernel global variables to collect all struct ctl_table

variables, such as fs_table in Figure 5.
Second, fs_table uses the function pointer in proc_handler to

display the parameter in the /proc/sys/ file system. Therefore, from
the proc_handler field, the pass follows its points-to and launches
an inter-procedural analysis to obtain the exact variable, whose
value is displayed in the sysctl configuration interface. As shown in
line 19 of Figure 5, our pass marks nr_files as the critical variable.

Third, our pass checks all usages of identified critical variables.
If one critical variable is used in a comparison instruction (i.e.,
icmp in LLVM IR), our pass records the locations and marks this
variable as the abstract resource. For example, nr_files is used for
comparison in line 25 of Figure 5. Our pass further detects that if the
comparison fails, an error is returned in lines 25 and 27. Therefore,
our pass marks nr_files as an abstract resource. By analyzing all
struct ctl_table structures, our pass gets a collection of abstract
resources.

4.1.2 Access-based Analysis. Besides sysctl configurations, the
Linux kernel also uses lock or atomic mechanism to protect the
concurrently-accessed resources. Therefore, we propose to use con-
current accesses as an indication to identify a set of shareable
abstract resources.

As the race condition and concurrency analysis is an old topic, we
adopt the existing lockset detection approaches [5, 68]. If the lock is
taken on a field of a data structure, we mark this data structure as an
abstract resource and add this function into the sensitive function
set. Moreover, if a variable is modified quantitatively between the
lock and unlock functions, we also mark it as the abstract resource.

Besides the lock/unlock, we observe that atomic and percpu

counter are also used to protect concurrently-accessed data, such
as percpu_counter_inc (line 19 in Figure 1) and atomic_inc_return

(line 6 in Figure 3). Therefore, we implement a pass to analyze
all atomic and percpu counter usages. Our pass first analyzes the
function parameters, and adds all functions with struct atomic_t,
struct atomic64_t, and struct percpu_counter parameters to an
atomic/percpu function set. Second, our pass traverses all state-
ments in all kernel functions to check all usages of atomic/percpu
functions. If a variable is passed to an atomic/percpu function, we
mark it as an abstract resource.

During the implementation, we find that the LLVM linker merges
structure types that have the same memory layout, such as typedef
struct {int counter;} atomic_t and typedef struct {uid_t val;}

kuid_t. The reason is that uid_t is of type unsigned int, which has
the same size as int. Therefore, the LLVM linker merges them and
mis-uses kuid_t for atomic_t. To address this problem, we trace the
LLVM linker and find that the getmethod in lib/Linker/IRMover.cpp

compares a new type with existing types and merges them if the
memory layout is same. Therefore, we disable the merging by com-
menting out the comparing and merging code.

4.2 Container-Controllability Analysis
With identified abstract resources, we propose container controlla-
bility analysis to make sure that the container can actually consume
those abstract resources. Our idea of the container controllability
analysis is two-fold. First, we need to make sure the abstract re-
source consumption sites from §4.1 can be reached by the container

processes. To achieve this, we perform the traditional backward
control-flow analysis based on the kernel control flow graph, in
which indirect calls are resolved based on struct-type [42, 70]. If
there are no paths from system call entries to the abstract resource
consumption sites, we mark this abstract resource unreachable
from the container.

Second, note that reachability analysis alone is not enough, we
need to further make sure that there are no additional container-
specific restrictions on the path. In other words, we need to check
if there are any restriction checks on the paths to make sure that
the container can exhaust these abstract resources. As mentioned
before, different from user-space programs, the container faces
more restrictions such as seccomp, namespaces, control groups as
well as per-user resource limitations. Since our reachability analysis
is standard, in the following, we focus on the restriction analysis.
Seccomp Restriction Analysis. Seccomp is a mechanism used
for system-call filtering. Our restriction analysis against seccomp is
as follows. In our implementation, we use Docker default seccomp
profile [15], which blocks more than 50 system calls. Among all the
paths from system call entries to the resource consumption sites,
we filter out paths that originate from any blocked system calls.
Per-User Restriction Analysis. In a real deployment, the con-
tainers are usually running as different users. Thus, the resource
consumption from each container is also restricted by the per-
user resource quotas. For example, Linux provides the user-limits
command ulimit for limiting resource consumption of a specific
user [50]. While the underlying implementation of ulimit is using
rlimit [39, 45] to set multiple per-user resource quotas.

Besides ulimit, Linux also provides interfaces that allow users to
leverage PAM (Pluggable Authentication Module) [63] to deploy
per-user quotas. The PAM uses the setup_limits function [64] to
set per-user resource quotas, which calls setrlimit to configure
multiple rlimit constraints. For the resources limited by ulimit, rlimit
and the PAM, the attacker-container cannot consume beyond the
per-user quotas. As a result, it cannot fully control those abstract
resources to launch DoS attacks. As both the ulimit and the PAM
use rlimit to set per-user resource quotas, we need to analyze rlimit
and filter out the abstract resources restricted by it.

For rlimit analysis, our key observation is that a rlimit value
is usually specified in struct rlimit or struct rlimit64. There-
fore, we first traverse the kernel IR to identify all variables that
are loaded from struct rlimit or struct rlimit64. And then, we
perform data-flow analysis to follow all the propagation and usages
of these variables and mark those functions if they are used in any
comparison instructions. In these functions, rlimit is checked to
limit certain resources. We consider those resources not exhaustible
by the attacker-container, therefore we filter out the paths based on
these functions. Our tool identifies 40 functions that check rlimit.
Namespace Isolation Analysis. As mentioned before, the Linux
kernel introduces namespaces for resource isolation. For a names-
pace isolated resource, the Linux kernel creates a “copy” for it under
each namespace so that the modification in one namespace does not
affect other namespaces. Therefore, to confirm container controlla-
bility, we need to make sure that those abstract resources are not
protected by namespaces. Here, the challenge is that even though
Linux has documentation about namespaces, there are no specifica-
tions about which abstract resources are isolated by namespaces.

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

771

Table 1: Summary of static analysis results. Res. is short
for resources; Reachable is container-reachable abstract
resources. Limited is per-user and namespace limited re-
sources. Manual is manually filtered out resources. CC Res.
means container controllable resources.

Res. Type Reachable Limited Manual CC Res.
Proc. 526 72 136 318
Mem. 110 10 26 74
Storage 256 57 66 133

IO 952 203 264 485
Total 1,844 342 492 1,010

Therefore, we propose namespace isolation analysis to identify the
abstract resources protected by namespaces systematically.

Our key observation is that for a namespace-isolated resource,
the corresponding data structure has a pointer field that points to
the namespace it belongs to. Therefore, our tool first traverses all
fields of each data structure type in the kernel. If the type has a
namespace pointer, we mark it as an isolated resource. Second, for
the identified isolated resources, our tool uses it to filter the shared
abstract resources identified in §4.1.

Note that some namespace-isolated resources may still be vul-
nerable to abstract resource attacks due to the mapping between
different namespaces. As mentioned in §3.2.2, idr is isolated by
pid_namespace->idr. However, each idr allocated in a non-root PID
namespace is mapped to a new idr in the root PID namespace, so
that the root namespace can manage it. As a result, the root PID
namespace is globally shared by all containers in all PID names-
paces. Therefore, it is still vulnerable to the idr exhaustion attacks.
In our analysis, we manually filter out these resources.

4.3 Analysis Results
We implement our analysis tool with about 2,500 lines of C++ code
in LLVM 12.0. The Linux kernel IR is generated based on the latest
Linux stable version v5.10 with defconfig. The results are shown
in Table 1. In particular, by applying the configuration-based anal-
ysis and the access-based analysis, together with the reachability
analysis from system calls and the seccomp restriction analysis, our
tool identifies 1,844 shared abstract resources that are reachable by
containers.
Resource Filtering. With the per-user quota restriction and the
namespace isolation analysis, our tool finds 342 resources that
are limited by the rlimit or have pointers pointing to namespace
structures. Those resources either have a limit check on the path
or get namespaced.

We further conduct a manual analysis. Specifically, for every re-
source𝑅 in the identified abstract resources, we walk through all the
detected modifications of 𝑅 or the fields of 𝑅. If the modification is
not quantitative, such as being assigned with boolean, enumeration,
or string types, we mark this modification as non-quantitative. If all
the modifications to 𝑅 and the fields of 𝑅 are non-quantitative, we
mark 𝑅 as non-exhaustible. Our manual analysis identifies 492 ab-
stract resources that are non-exhaustible, as shown in Table 1. After
manual analysis, there are still 1,010 abstract resources remaining.

Table 2: Summary of validation results. Res. Dir. is the direc-
tory of resources. The drivers either have hardware support,
or have no hardware support. No. is resources number, Re-
peatedlymeans the resource consumption can be repeatedly
triggered.

Res. Dir. No. Repeatedly True Postive
Non-Driver 700 389 55.6%

Driver Have HW 218 112 51.4%
No HW 92 - -

Dynamic Validation. To further validate the dynamic exhaustion
of these 1,010 resources, we develop a dynamic validation method
for resource consumption. For each resource, we first obtain its
consumption sites and the triggered system calls from the above
controllability analysis. After that, we instrument those consump-
tion sites to monitor the actual resource consumption. Next, we
execute the test cases of the corresponding triggered system calls
to repeatedly trigger the consumption and record the results. We
leverage 1,156 test cases from the Linux Test Project (LTP) [14] and
develop 177 new ones to cover more cases. We also develop scripts
to automate the above steps.

We applied our dynamic validation method to test the consump-
tion of all 1,010 resources. The results are summarized in Table 2.
For the 1,010 detected resources, 700 of them are not in the driver
folder, while the other 310 resources are in the driver folder, as
shown in Table 2. For the 700 non-driver resources, 389 of them
can be repeatedly triggered dynamically, leading to a true posi-
tive rate of 55.6%. The resources in the driver folder need to be
handled specially for two reasons. First, drivers are specific to the
hardware. Without the corresponding hardware, the driver code
cannot be triggered dynamically. Our key observation is that most
hardware-supported drivers expose specific interfaces under /dev
or /sys/class folders. Based on this observation, we remove 92 re-
sources in drivers that are not supported by our hardware. Second,
the test cases provided by LTP might not cover a specific driver.
To resolve this problem, we modify the LTP test cases and develop
new test cases for the drivers. Among the 218 driver resources, 112
of them can be repeatedly triggered, leading to a true positive rate
of 51.4%, as shown in Table 2.

Identifying container-exhaustible abstract resources is a very
challenging task, as it requires the domain knowledge to trigger
the exhaustion of abstract resources and it needs to assess the
impacts when these resources are exhausted. In this paper, we
conduct a preliminary analysis. Note that a thorough analysis and
risk assessment needs help from the Linux kernel and the container
community. Therefore, we plan to open source our tool and the
detected abstract resources. We think it will help the Linux kernel
and the container community to identify the weak spots of resource
isolation and develop robust resource containment schemes.

5 ABSTRACT RESOURCE ATTACKS ON
CLOUD PLATFORMS

In this section, we further evaluate abstract resource attacks on the
container environments of public cloud vendors. We first present
the environment setup and then give out the results.

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

772

Table 3: Summary of the abstract resources chosen from analysis results.

OS Service Resource Name Identification Consumption Function Syscall
Process PID idr Access alloc_pid() fork()
Memory dirty ratio Access balance_dirty_pages() write()

Storage inode Access __ext4_new_inode() creat()
nr_files Configuration alloc_empty_file() open()

IO
pty_count Configuration devpts_new_index() open()

netns_ct->count Access __nf_conntrack_alloc() connect()
random entropy Access extract_entropy() read()

5.1 Environment Setup and Ethical
Considerations

To evaluate the effectiveness of the abstract resource attack, we set
up the container environments on both local and cloud platforms.
The local test environment has been presented in §3.1.
Ethical Considerations. For the cloud platforms, we intend to
minimize the impact of our attacks on other cloud users as much
as possible. Therefore, we use a dedicated virtual server, e.g., AWS
EC2, Azure VM, Google GCE, and Alibaba ECS, to conduct the
experiments. In addition, we ensure that we are the only user of
that server.

Moreover, most container users leverage the container orches-
tration systems to deploy and manage containers [36]. Therefore,
we choose the most popular one named Kubernetes and leverage
cloud vendors’ Kubernetes services to deploy two docker containers
(i.e., the attacker-container and the victim-container) on the virtual
server. For strong isolation, we apply different Kubernetes names-
paces [37] for the attacker-container and the victim-container. As
mentioned in §4.2, containers are also subjected to per-user quota
restrictions. To enforce the per-user quotas in our experiments, we
run the attacker-container and the victim-container in separate
users with the per-user quota enforced. We also discuss restrictions
that can be deployed by the PAM in §6.
Amazon AWS. For the container services, we use Elastic Kuber-
netes Service (EKS) [2] to deploy two container instances on an
EC2 instance. The EC2 instance contains 4 CPUs, 8 GB memory,
and 20 GB SSD disk. During the container deployment, we surpris-
ingly find that the “Amazon EKS default pod security policy” uses
eks.privileged as the default pod security policy [3]. Note that this
policy allows containers to run as a privileged user and also allows
privilege escalation as well as host network accesses.

To better demonstrate the effectiveness of our proposed attack,
we adopt a stronger security policy from our local test environment
to EKS containers, which runs containers in non-root users, drops
all privileges, enables all namespaces and control groups, and uses
docker seccomp profile [15] to block 50+ sensitive system calls
including ptrace, pivot_root, etc. And we apply the same security
policy for both the attacker-container and the victim-container.
MS Azure. We use Azure Kubernetes Service (AKS) [51] to deploy
two container instances on an Azure virtual machine. The Azure
VM contains 2 CPUs, 8 GBmemory, and 120 GB disk. To improve the
security of the deployed containers, Azure provides best practices
for pod security policy in AKS [52], which runs a container in
the non-root user by setting runAsUser:1000 in yaml file, and it

denies privilege escalation by setting allowPrivilegeEscalation:

false. However, it still adds two capabilities, i.e., CAP_NET_ADMIN and
CAP_SYS_TIME, and does not enforce seccomp.

Same as the AWS settings, we adopt a tighter security policy for
containers on AKS. In addition to the best practices suggestions
(i.e., non-root user and disallowing privilege escalation), we run
AKS containers in non-root users, drop all capabilities, enable all
namespaces and control groups, and use docker seccomp profile [15]
to block 50+ sensitive system calls. And we apply the same security
policy for both the attacker-container and the victim-container.
Google Cloud. For the container services, we choose the Kuber-
netes and use Google Kubernetes Engine (GKE) [27] to deploy two
container instances on a Google Compute Engine instance [28]. The
Google Compute Engine (GCE) instance we use contains 4 CPUs, 16
GB memory, and 100 GB SSD. More specifically, we apply one GCE
instance and deploy two containers (i.e., the attacker-container and
the victim-container) based on the regular runtime on that GCE
instance.

For the container deployment, we follow the GKS container setup
wizard. Google Cloud provides best practices for operating contain-
ers [29], which suggests avoiding privileged containers. Therefore,
in securityContext of the yaml configuration file, we disallow the
privileged escalation, run the container as a non-privileged user,
and drop all the capabilities. The GKS setup wizard enables 6 names-
paces and 13 control groups by default. Besides, we apply the docker
default seccomp profile to filter out sensitive system calls.

Furthermore, the GKE also offers Google’s secure container
runtime—gVisor [31], which leverages a user-space kernel named
Sentry, to serve the system calls from applications. Sentry calls
about 50 system calls of the host machine to provide services as
needed. gVisor is regarded as a secure sand-boxed runtime for
containers [31]. For the container deployment based on gVisor,
all its security settings (including non-privileged user, dropping
capabilities) are the same as the GKE docker runtime settings.
Alibaba Cloud. For the container services, Alibaba Cloud provides
Elastic Container Instance, Container Service for Kubernetes, Con-
tainer Registry, and Alibaba Cloud Service Mesh [1]. We use the
Container Service for Kubernetes to deploy two container instances
on an Elastic Computing Service (ECS) instance. The ECS instance
contains 4 CPUs, 16 GB memory, and 120 GB SSD disk. For con-
tainer security, we follow the official guide for container service
deployment [11], which runs containers with non-root user by
setting runAsUser to 1000. However, it does not disallow privilege
escalation and does not enforce seccomp and SELinux either.

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

773

We adopt a stronger security policy, which is the same as previ-
ous ones. We run containers in non-root users, drop all capabilities,
enable all namespaces and control groups, and use docker sec-
comp profile [15] to block sensitive system calls. And we apply
the same security policy for both the attacker-container and the
victim-container.

5.2 Selection of Abstract Resources
To conduct the attacks, we need to select meaningful abstract re-
sources. To demonstrate the effectiveness of abstract resource at-
tacks, we want to select abstract resources that affect each aspect
of the operating system services, including process management,
memory management, storage management, and IO management.
Therefore, we first classify all the identified resources into these
four categories, i.e., for process, for memory, for storage, and for
IO management, according to their declaration locations. Then, we
pick at least one resource from each category based on our domain
knowledge, i.e., we know the impacts of resource exhaustion.

Eventually, we select 7 abstract resources covering all four as-
pects, as shown in Table 3. The resource names are listed in the
second column of Table 3. Among the selected abstract resources, 5
of them (i.e., PID idr, dirty ratio, inode, netns_ct->count, and random
entropy) are identified by the access-based analysis, and the other
2 (i.e., nr_files and pty_count) are identified by the configuration-
based analysis, as shown in the third column of Table 3. We also
list the resource consumption functions in the fourth column and
the system calls we can use to trigger the attacks in the last column
of Table 3.

5.3 Attacking Results on Cloud Platforms
Asmentioned in the previous session, we set up 5 test environments
for our proposed attack, including the ones on local, AWS, Azure,
Google Cloud, and Alibaba Cloud. For each test environment, we
set up two containers with tight security policies, as the attacker-
container and victim-container. The attacker-container launches
attacks targeting certain abstract resources. We use the above 7
selected abstract resources to launch the attacks. A benchmark
is running on both the victim-container and the host-machine to
measures their performance downgrade under abstract resource
attacks. The results are shown in Table 4.
The PID idr attack. The PID idr attack and its root cause have
been detailed in §3.2.1. For the PID attack on the vendors, all victim
containers and even the host-machine in Local, AWS, Azure, and
Google test environments cannot fork new processes. The victim
containers even get evicted. Alibaba Cloud is not vulnerable to the
PID attack.
The dirty ratio attack. The dirty ratio attack has been discussed
in §3.3.1. Without the attack, the IO performance is regarded as
100%. Under the dirty ratio attack, the IO performance of victim-
container on AWS, Azure, and Alibaba Cloud drop to 6.3%, 1.2%,
6.7%, respectively. Even worse, the host-machine is also vulnerable
to this attack, while its IO performance drops to 8.3%on AWS and
drops to 8.6% on Alibaba Cloud. Here MS Azure does not provide
any access to the host machine, so we cannot get Azure host IO
performance. Google Cloud is not vulnerable to the dirty ratio
attack.

The inode attack. In the inode attack, the victim-container keeps
allocating inode structures. Unfortunately, the mount namespace
does not isolate the inode. Neither the Linux kernel provides any
inode related control groups. As a result, all inodes on the partition
are exhausted. All operations consuming inodes fail, including
the ones from the victim-container or the host machine. In our
experiments, Alibaba Cloud is vulnerable to the inode attack. The
victim-container even gets evicted. Moreover, the host-machine
cannot create any new files either.
The nr_files attack.The nr_files attack has been discussed in §3.4.1.
nr_files is globally shared by all containers. There are no names-
paces or control groups to limit its usages. With nr_files quota
exhausted, various operations fail, including file open, executing a
new program, pipe creation, socket creation, and the timer creation,
as everything in Linux is a file. Our experiment shows all of the
top 4 vendors are vulnerable to the nr_files attack.
The pty_count attack. The pty_count attack has been discussed
in §3.5.1, which uses up all open pseudo-terminals quota. As a
result, all operations that need to open a new pseudo-terminal fail,
such as SSH connections. Unfortunately, all of the top 4 vendors
are vulnerable to the pty_count attack.
The netns_ct->count attack. Netfilter in the Linux kernel provides
connection tracking functionalities, which keeps track of all logical
network connections [66]. While the total connection has a limit,
and it is counted by struct netns_ct->count [34]. Both the host
machine and the containers need to maintain the connections. Even
though the containers are in the different net namespace, all of their
connections need to consume the init_net.ct.count [35] of the init
net namespace of the host machine. Therefore, if one can generate a
large number of TCP connections in a short time, it can consume all
quota of init_net.ct.count, causing Netfilter malfunction. In our
experiments, the attacker-container can exhaust init_net.ct.count
in a few seconds, which causes random packet dropping. Again,
all environments of the top 4 vendors are vulnerable to the struct

netns_ct->count attack.
The random entropy attack. In the Linux kernel, every read to
the /dev/random consumes the random entropy. Whenever the ran-
dom entropy drops below a threshold, the Linux kernel blocks read
operations to /dev/random and waits for the entropy to increase [41].
As there are no namespace or control groups to isolate the random
entropy, the attacker-container can easily consume all random en-
tropy by repeatedly reading /dev/random, and lead to benign reads
blocked. The latest Linux kernel v5.10 fixed this issue by redirect-
ing /dev/random reads to /dev/urandom. However, both Azure and
Alibaba Cloud are vulnerable to this attack.

5.4 Attacking gVisor
We also conduct the 7 resource attacks on gVisor. To set up gVi-
sor environment, we select runsc, instead of runc, as the con-
tainer runtime in Google Kubernetes Engine (GKE), as mentioned
in §5.1. Among the 7 attacks, two attacks, i.e., nr_files attack and
netns_ct->count attack, still work in the gVisor environment. In the
following, we present our analysis to show why these two attacks
work on gVisor.

For the nr_files, gVisor uses Sentry to serve syscalls and Gofer
to handle different types of IO for the Sentry. Sentry intercepts

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

774

Table 4: Summary of the attack results on different environments. “Y” indicates a successful attack, “-” indicates a failed attack.

Abstract Resources Local AWS Azure Google Alibaba Attacking Results
PID idr Y Y Y Y - Fork fail, victim container is evicted
dirty ratio Y Y Y - Y IO performance down for over 90%
inode Y - - - Y Victim container gets evicted
nr_files Y Y Y Y Y Operations requiring open-new-file fail
pty_count Y Y Y Y Y New SSH connections are rejected
netns_ct->count Y Y Y Y Y Random packets dropping
random entropy Y - Y - Y /dev/random read blocked

the open syscall from the container and sends the request to Gofer.
On the other side, Gofer handles the request by calling the openat

syscall of the host OS. Eventually, the openat syscall on the host
OS triggers the alloc_empty_file function, which consumes the
nr_files. In this way, the attacker in gVisor is able to exhaust the
nr_files of the host machine.

For the netns_ct->count, Sentry intercepts the connect syscall
and uses its own network stack to forward the data packets to
the veth-peer network card created in the host. The veth-peer is
attached to the virtual bridge in the host. When a network frame is
forwarded via a virtual bridge, the netfilter on the host is triggered
to call the nf_conntrack_alloc function, which in turn consumes
the netns_ct->count. Therefore, attackers in gVisor still can exhaust
the netns_ct->count of the host machine.

5.5 Summary
For the self-deployed shared-kernel container environments, two
of them are vulnerable to 6 attacks, one is vulnerable to 5 attacks,
and the other one is vulnerable to 4 attacks. Surprisingly, gVisor
runtime is also vulnerable to 2 attacks—the nr_files attack and the
netns_ct->count attack. We have reported these attacks to all the
four vendors. All of them confirmed that the problems exist in their
shared-kernel container environments.

Though the top vendors use virtual machines to isolate the con-
tainers for different tenants, abstract resource attack is still practical
for several reasons. First, as demonstrated on Linux, FreeBSD, and
Fuchsia, abstract resource attack is intrinsic to OS-level virtualiza-
tion and thus is a broad class of attacks. Second, inexperienced users
may not understand the risks of the shared-kernel and may use
containers for sand-boxing [62]. Our paper would help to improve
the awareness of the risks. Third, even within the same tenant, the
competing teams might attack each other by exploiting abstract
resources. Therefore, it is still necessary to monitor and mitigate
such attacks.

6 MITIGATION DISCUSSIONS
In this paper, we reveal that other than physical resources, con-
tainers are also sharing the abstract resources of the underlying
running kernel. These abstract resources are easy to attack and the
consequences are severe. In the following, we give out multiple
strategies for mitigating the risks introduced by abstract resources.
UsingPAMfor per-user quota restrictions.Asmentioned in §4.2,
the Linux kernel provides interfaces allowing the user to load user-
customized PAM. PAM is able to limit 18 resources, 5 of which are
for abstract resources, including maxlogin/maxsyslogins, nofile,

nproc, and sigpending [48]. From our communication with the
cloud vendors, we are not aware that any cloud vendors adopt
PAM. Therefore, it is suggested to use PAM for certain abstract
resource restrictions.
Using VM for strong isolation. For the security-critical applica-
tions, we suggest not using the multi-tenancy container environ-
ments. Stronger isolation schemes, such as the virtual machine-
based virtualization, are more preferable.
Using Monitoring Tools.We recommend to use the monitoring
tools for Kubernetes clusters, such as Falco [61], to monitor the
resource consumption of containers. For sensitive abstract resources
such as nr_files and inode, users should customize their own rules
to monitor specific resource consumption in the system.
Improving current isolation design. For the existing names-
paces, such as PID namespace, due to the mapping to the root
namespace design, it cannot defend against the resource exhaus-
tion attacks. As detailed in §3.2.2, the Linux kernel allocates an
extra idr in the root PID namespace for any idr allocated in other
PID namespaces. As a result, the root PID namespace is still glob-
ally shared. The attacker can still easily exhaust the PID in the
root PID namespace, causing DoS attacks. For the similar reason,
nf-conntrack count netns_ct->count can be attacked even if it is
isolated by network namespace. Therefore, Linux community needs
to review the namespace design, eliminating the namespace depen-
dencies to improve the isolation.
New kernel containment mechanisms. The Linux kernel com-
munity and the container community need to put more effort into
the protection of abstract resources. Actually, we report this prob-
lem to the Docker security team. The feedback is that “Linux con-
tainers can only use available kernel isolation mechanisms. If there
are no kernel mechanisms to control the limit, the container can-
not do anything to restrict it”. Therefore, we first need a thorough
analysis of all container shareable abstract resources, so that we
can understand and more importantly, clear up their data depen-
dencies. This requires comprehensive kernel domain knowledge
and substantial kernel code changes. Moreover, the Linux kernel
is not initially designed for supporting OS-level virtualization. Its
resource isolation and containment are incomplete. Therefore, new
namespace and control groups are needed.
More restrictive system call blocking. From the container side,
currently, even with seccomp enforced, the applications in the con-
tainers can still access about 250 system calls. Before we understand
the data dependency of those system calls, it is suggested to enforce
a more strict seccomp profile to block more unnecessary system
calls. The container users can use techniques in [13, 25, 26, 38, 55]

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

775

to get tighter seccomp profiles, to reduce the potential of abstract
resource attacks.

7 RELATEDWORK
In this section, we present the studies that are related to virtualiza-
tion, resource isolation, and container security.

7.1 Virtualization Techniques
There are two mainstream virtualization techniques used in the
cloud environment, VM-based virtualization and OS-level virtu-
alization. Compared with the VM-based virtualization, OS-level
virtualization is becoming popular for enabling full application ca-
pability with light-weight virtualization. To fully understand the
performance advantages, researchers have conducted a series of
studies. Felter et al. show that Docker can achieve better perfor-
mance than KVM in all cases by using a set of benchmarks covering
multiple resources [17]. Joy et al. make a comparison between
Linux containers and virtual machines in terms of performance
and scalability [32]. Zhang et al. show that the container has better
performance than virtual machines in big data environment [69].

All these works demonstrate that OS-level virtualization has bet-
ter performance than traditional VM-based virtualization. However,
none of them pay attention to the potential influence of underlying
kernel abstract resources. Our paper reveals the new attack surfaces
introduced by abstract resources.

7.2 Resource Isolation
Linux uses capabilities [43] to prohibit processes without certain ca-
pabilities from accessing resource instances of corresponding types.
Researchers have proposed approaches that are based on Linux
capabilities, such as Wedge [7], Capsicum [65], and ACES [10].
These works enforce more fine-grained capability control to mit-
igate memory corruption attacks. However, they cannot defend
against our DoS attacks which exhaust accessible shared resources.

Memory address space isolation [56] is a typical resource space
isolation scheme, which avoids memory address resource from be-
ing exhausted. Linux namespaces [47] isolate 8 types of resources
listed in §2.1. These schemes can isolate only limited types of re-
sources. Resource containers [6] propose to extend monolithic
kernel to isolate system resources and account for resources at
thread-level, which is similar to control groups. Using resource
containers to protect all abstract resources is impractical due to
the large performance overhead. EdgeOS [57] deploys OS with
strong isolation for edge clouds. However, adopting a micro-kernel
without hardware supporting introduces more overhead than a
monolithic kernel. Faasm[58] uses software-fault isolation (SFI) for
memory isolation while uses namespaces to isolate the network
resource space in server-less computing. However, most shared
resources are still exposed to the threat of DoS attacks.

7.3 Container Security
Besides resource isolation, there are studies on container security.
Gao et al. find that information leaks from /proc or /sys can be
exploited to launch power attacks [22]. While the same research
group also conducts five attacks to generate out-of-band workloads
to break the resource constraints of Linux control groups [23].

However, they mainly focus on information leakage problem or
attacking physical resources such as CPU, IO, not abstract resources.

Lin et al. show that containers cannot isolate kernel vulnerabil-
ities [40]. Another work uses static analysis to analyze Docker’s
code in order to find differences between the vulnerable and the
patched code [16]. However, these works focus on existing vulner-
abilities and exploits. On the contrary, our work introduces new
attacks targeting the shared abstract resources.

There are also works on securing containers. Lei et al. propose
a container security mechanism called SPEAKER to reduce the
application’s available system calls inside container [38]. Sun et
al. develop security namespaces that provide the security policy
isolation for each container[60]. Another work uses Intel SGX to se-
cure containers [4], which provides a small trusted computing base
with low-performance overhead. Brady et al. implement a security
assessment system of container images [8]. However, containers in
all of these works still rely on the kernel for various services and
thus are still vulnerable to abstract resource attacks.

8 CONCLUSION
In this paper, we reveal a new attack surface introduced by the
shared-kernel in OS-level virtualization. The containers are directly
and indirectly sharing thousands of abstract resources, which can
be exhausted easily to cause DoS attacks against other containers.
To show the importance of confining abstract resources, we have
conducted abstract resource attacks, targeting abstract resources on
different aspects of the operating system kernel. The results show
that attacking abstract resources is highly practical and critical.

Abstract resources are inherently hard to contain. To understand
the attack surfaces, we take an initial trial by conducting a sys-
tematic analysis to identify vulnerable abstract resources in the
Linux kernel. Our tool successfully detects 501 dynamically trig-
gered abstract resources, in which we pick 7 ones and conduct the
attacking experiments in the self-deployed shared-kernel container
environments on the top 4 cloud vendors. The results show that
all environments are vulnerable to our attacks. As a mitigation, we
provide several suggestions for container users and developers to
reduce the risks.

ACKNOWLEDGMENTS
The authors would like to thank all reviewers for the insightful com-
ments. Those comments helped to re-shape this paper. This work
is partially supported by the National Natural Science Foundation
of China (Grants No. 62002317, 62032021, and 61772236), by the
National Key R&D Program of China (Grant No. 2020AAA0107700),
by the Key R&D Program of Shaanxi Province of China (Grant No.
2019ZDLGY12-06), by the Leading Innovative and Entrepreneur
Team Introduction Program of Zhejiang (Grant No. 2018R01005),
and by the Ant Group Funds for Security Research.

REFERENCES
[1] Alibaba. 2020. Alibaba Cloud. https://us.alibabacloud.com/.
[2] Amazon. 2020. Containers on AWS. https://aws.amazon.com/containers.
[3] Amazon. 2020. Pod security policy. https://docs.aws.amazon.com/eks/latest/

userguide/pod-security-policy.html.
[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. 2016. {SCONE}: Secure linux containers with intel {SGX}. In 12th

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

776

https://us.alibabacloud.com/
https://aws.amazon.com/containers
https://docs.aws.amazon.com/eks/latest/userguide/pod-security-policy.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-security-policy.html

{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16). USENIX Association, 689–703.

[5] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. 2019. Effective static
analysis of concurrency use-after-free bugs in Linux device drivers. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19). USENIX Associa-
tion, 255–268.

[6] Gaurav Banga, Peter Druschel, and Jeffrey C Mogul. 1999. Resource containers:
A new facility for resource management in server systems. In Proceedings of
the Third USENIX Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, Louisiana, USA, February 22-25, 1999. USENIX Association,
45–58.

[7] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008. Wedge:
Splitting applications into reduced-privilege compartments. In 5th USENIX Sym-
posium on Networked Systems Design & Implementation,NSDI 2008, April 16-18,
2008, San Francisco, CA, USA, Proceedings. USENIX Association, 309–322.

[8] Kelly Brady, Seung Moon, Tuan Nguyen, and Joel Coffman. 2020. Docker con-
tainer security in cloud computing. In 2020 10th Annual Computing and Commu-
nication Workshop and Conference (CCWC). IEEE, 975–980.

[9] Thanh Bui. 2015. Analysis of docker security. arXiv preprint arXiv:1501.02967
(2015). http://arxiv.org/abs/1501.02967

[10] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias
Payer. 2018. {ACES}: Automatic compartments for embedded systems. In 27th
{USENIX} Security Symposium ({USENIX} Security 18). USENIX Association,
65–82.

[11] Alibaba Cloud. 2020. Pod security policy. https://www.alibabacloud.com/help/
doc-detail/149547.html.

[12] Theo Combe, Antony Martin, and Roberto Di Pietro. 2016. To docker or not to
docker: A security perspective. IEEE Cloud Computing 3, 5 (2016), 54–62.

[13] Nicholas DeMarinis, Kent Williams-King, Di Jin, Rodrigo Fonseca, and Vasileios P
Kemerlis. 2020. Sysfilter: Automated system call filtering for commodity software.
In 23rd International Symposium on Research in Attacks, Intrusions and Defenses
({RAID} 2020). USENIX Association, 459–474.

[14] LTP Developers. 2021. Linux Test Project. https://linux-test-project.github.io/.
[15] Docker. 2020. Seccomp security profiles for Docker. https://docs.docker.com/

engine/security/seccomp/.
[16] Ana Duarte and Nuno Antunes. 2018. An empirical study of docker vulnerabilities

and of static code analysis applicability. In 2018 Eighth Latin-American Symposium
on Dependable Computing (LADC). IEEE, 27–36.

[17] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated
performance comparison of virtual machines and linux containers. In 2015 IEEE
international symposium on performance analysis of systems and software (ISPASS).
IEEE Computer Society, 171–172.

[18] FreeBSD. 2021. freeBSD handbook. https://docs.freebsd.org/en/books/handbook/
jails/.

[19] Fuchsia. 2020. Zircon handles. https://fuchsia.dev/fuchsia-src/concepts/kernel/
handles.

[20] Fuchsia. 2020. ZX RIGHTS BASIC. https://fuchsia.dev/fuchsia-src/concepts/
kernel/rights#zx_rights_basic.

[21] Peter B Galvin, Greg Gagne, Abraham Silberschatz, et al. 2003. Operating system
concepts. John Wiley & Sons.

[22] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining
Wang. 2017. ContainerLeaks: Emerging security threats of information leakages
in container clouds. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE Computer Society, 237–248.

[23] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang. 2019.
Houdini’s Escape: Breaking the Resource Rein of Linux Control Groups. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019. ACM, 1073–1086.

[24] Xing Gao, Benjamin Steenkamer, Zhongshu Gu, Mehmet Kayaalp, Dimitrios
Pendarakis, and Haining Wang. 2018. A study on the security implications of
information leakages in container clouds. IEEE Transactions on Dependable and
Secure Computing 18, 1 (2018), 174–191.

[25] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated system call policy generation for container
attack surface reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2020). USENIX Association, 443–458.

[26] SeyedhamedGhavamnia, Tapti Palit, ShacheeMishra, andMichalis Polychronakis.
2020. Temporal system call specialization for attack surface reduction. In 29th
{USENIX} Security Symposium ({USENIX} Security 20). USENIX Association,
1749–1766.

[27] Google. 2020. GKE quick start. https://cloud.google.com/kubernetes-engine/
docs/quickstart.

[28] Google. 2020. google compute engine of Containers. https://cloud.google.com/
compute/docs/containers.

[29] Google. 2021. Best practices for operating containers. https://cloud.google.com/
kubernetes-engine/docs/best-practices/enterprise-multitenancy.

[30] Aaron Grattafiori. 2016. Understanding and hardening linux containers. Whitepa-
per, NCC Group (2016).

[31] 2020 The gVisor Authors. 2020. What is gVisor. https://gvisor.dev/docs.
[32] Ann Mary Joy. 2015. Performance comparison between linux containers and

virtual machines. In 2015 International Conference on Advances in Computer
Engineering and Applications. 342–346.

[33] Poul-Henning Kamp and Robert NM Watson. 2000. Jails: Confining the om-
nipotent root. In Proceedings of the 2nd International SANE Conference, Vol. 43.
116.

[34] Linux Kenrnel. 2020. Kernel source - nf-conntrack-core.c. https://
elixir.bootlin.com/linux/v5.10/source/net/netfilter/nf_conntrack_core.c#L1480.

[35] Linux Kernel. 2020. Kernel source - nf-conntrack-standalone.c.
https://elixir.bootlin.com/linux/v5.10/source/net/netfilter/
nf_conntrack_standalone.c#L614.

[36] Kubernetes. 2020. Kubernetes. https://kubernetes.io/.
[37] Kubernetes. 2020. Kubernetes Namespaces. https://kubernetes.io/docs/concepts/

overview/working-with-objects/namespaces/.
[38] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang,

and Qi Li. 2017. SPEAKER: Split-phase execution of application containers. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (Lecture Notes in Computer Science, Vol. 10327). Springer, 230–251.

[39] GNU C Library. 2021. ulmit source code. https://sourceware.org/git/?p=
glibc.git;a=blob_plain;f=sysdeps/posix/ulimit.c.

[40] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018.
A measurement study on linux container security: Attacks and countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference. ACM,
418–429.

[41] Linux. 2020. random read kernel function. https://elixir.bootlin.com/linux/v5.3.1/
source/drivers/char/random.c#L1948.

[42] Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets
with multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1867–1881.

[43] Linux man-pages project. 2020. capabilities(7) — Linux manual page. https:
//man7.org/linux/man-pages/man7/capabilities.7.html.

[44] Linux man-pages project. 2020. cgroups - Linux control groups. http://man7.org/
linux/man-pages/man7/cgroups.7.html.

[45] Linux man-pages project. 2020. getrlimit man page. https://man7.org/linux/man-
pages/man2/getrlimit.2.html.

[46] Linux man-pages project. 2020. Linux pty. https://man7.org/linux/man-pages/
man7/pty.7.html.

[47] Linux man-pages project. 2020. namespace - Linux Namespace. https://man7.org/
linux/man-pages/man7/namespaces.7.html.

[48] Linux man-pages project. 2020. PAM limits conf man page. https://
www.man7.org/linux/man-pages/man5/limits.conf .5.html.

[49] Linux man pages project. 2020. sysctl man page. https://man7.org/linux/man-
pages/man8/sysctl.8.html.

[50] Linux man-pages project. 2020. ulimit man page. https://man7.org/linux/man-
pages/man3/ulimit.3.html.

[51] Microsoft. 2020. Containers on Azure. https://azure.microsoft.com/en-us/
product-categories/containers/.

[52] Microsoft. 2020. Security policy on Azure. https://docs.microsoft.com/azure/aks/
developer-best-practices-pod-security.

[53] FreeBSD Manual Pages. 2021. ezjail man page. https://www.freebsd.org/cgi/
man.cgi?query=ezjail.

[54] FreeBSD Manual Pages. 2021. rctl man page. https://www.freebsd.org/cgi/
man.cgi?query=rctl&sektion=8.

[55] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. 2020. Auto-
mated policy synthesis for system call sandboxing. Proceedings of the ACM on
Programming Languages 4, OOPSLA (2020), 135:1–135:26.

[56] James L Peterson and Abraham Silberschatz. 1985. Operating system concepts.
Addison-Wesley Longman Publishing Co., Inc.

[57] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley Kennedy, Gabriel Parmer,
Timothy Wood, and Alain Tchana. 2020. Fine-Grained Isolation for Scalable, Dy-
namic, Multi-tenant Edge Clouds. In 2020 {USENIX} Annual Technical Conference
({USENIX} {ATC} 20). USENIX Association, 927–942.

[58] Simon Shillaker and Peter Pietzuch. 2020. Faasm: lightweight isolation for efficient
stateful serverless computing. In 2020 {USENIX} Annual Technical Conference
({USENIX} {ATC} 20). USENIX Association, 419–433.

[59] Solaris. 2020. Solaris Zones. https://docs.oracle.com/cd/E26502_01/html/E29024/
toc.html.

[60] Yuqiong Sun, David Safford, Mimi Zohar, Dimitrios Pendarakis, Zhongshu Gu,
and Trent Jaeger. 2018. Security namespace: making linux security frameworks
available to containers. In 27th {USENIX} Security Symposium ({USENIX} Secu-
rity 18). USENIX Association, 1423–1439.

[61] Sysdig. 2021. Sysdig Falco. https://sysdig.com/opensource/falco/.
[62] William Viktorsson, Cristian Klein, and Johan Tordsson. 2020. Security-

Performance Trade-offs of Kubernetes Container Runtimes. In 28th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, MASCOTS 2020, Nice, France, November 17-19, 2020. IEEE, 1–4.
https://doi.org/10.1109/MASCOTS50786.2020.9285946

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

777

http://arxiv.org/abs/1501.02967
https://www.alibabacloud.com/help/doc-detail/149547.html
https://www.alibabacloud.com/help/doc-detail/149547.html
https://linux-test-project.github.io/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/
https://fuchsia.dev/fuchsia-src/concepts/kernel/handles
https://fuchsia.dev/fuchsia-src/concepts/kernel/handles
https://fuchsia.dev/fuchsia-src/concepts/kernel/rights##zx_rights_basic
https://fuchsia.dev/fuchsia-src/concepts/kernel/rights##zx_rights_basic
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/compute/docs/containers
https://cloud.google.com/compute/docs/containers
https://cloud.google.com/kubernetes-engine/docs/best-practices/enterprise-multitenancy
https://cloud.google.com/kubernetes-engine/docs/best-practices/enterprise-multitenancy
https://gvisor.dev/docs
https://elixir.bootlin.com/linux/v5.10/source/net/netfilter/nf_conntrack_core.c##L1480
https://elixir.bootlin.com/linux/v5.10/source/net/netfilter/nf_conntrack_core.c##L1480
https://elixir.bootlin.com/linux/v5.10/source/net/netfilter/nf_conntrack_standalone.c##L614
https://elixir.bootlin.com/linux/v5.10/source/net/netfilter/nf_conntrack_standalone.c##L614
https://kubernetes.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/posix/ulimit.c
https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/posix/ulimit.c
https://elixir.bootlin.com/linux/v5.3.1/source/drivers/char/random.c##L1948
https://elixir.bootlin.com/linux/v5.3.1/source/drivers/char/random.c##L1948
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man2/getrlimit.2.html
https://man7.org/linux/man-pages/man2/getrlimit.2.html
https://man7.org/linux/man-pages/man7/pty.7.html
https://man7.org/linux/man-pages/man7/pty.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.man7.org/linux/man-pages/man5/limits.conf.5.html
https://www.man7.org/linux/man-pages/man5/limits.conf.5.html
https://man7.org/linux/man-pages/man8/sysctl.8.html
https://man7.org/linux/man-pages/man8/sysctl.8.html
https://man7.org/linux/man-pages/man3/ulimit.3.html
https://man7.org/linux/man-pages/man3/ulimit.3.html
https://azure.microsoft.com/en-us/product-categories/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://docs.microsoft.com/azure/aks/developer-best-practices-pod-security
https://docs.microsoft.com/azure/aks/developer-best-practices-pod-security
https://www.freebsd.org/cgi/man.cgi?query=ezjail
https://www.freebsd.org/cgi/man.cgi?query=ezjail
https://www.freebsd.org/cgi/man.cgi?query=rctl&sektion=8
https://www.freebsd.org/cgi/man.cgi?query=rctl&sektion=8
https://docs.oracle.com/cd/E26502_01/html/E29024/toc.html
https://docs.oracle.com/cd/E26502_01/html/E29024/toc.html
https://sysdig.com/opensource/falco/
https://doi.org/10.1109/MASCOTS50786.2020.9285946

[63] Dmitry V.Levin. 2020. pam model source code. https://github.com/linux-pam/
linux-pam/releases/tag/v1.5.1.

[64] Dmitry V.Levin. 2021. setup_limits source code. https://github.com/linux-pam/
linux-pam/blob/v1.5.1/modules/pam_limits/pam_limits.c#L984.

[65] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2010.
Capsicum: Practical Capabilities for UNIX.. InUSENIX Security Symposium, Vol. 46.
USENIX Association, 2. https://doi.org/10.1109/MASCOTS50786.2020.9285946

[66] Wikipedia. 2020. Connection tracking. https://en.wikipedia.org/wiki/
Netfilter#Connection_tracking.

[67] Wikipedia. 2020. OS-level virtualization. https://en.wikipedia.org/wiki/OS-
level_virtualization.

[68] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and scalable detection of double-fetch bugs in OS kernels. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA. IEEE Computer Society, 661–678. https://doi.org/
10.1109/SP.2018.00017

[69] Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu, and Wei Zhou. 2018. A
comparative study of containers and virtual machines in big data environment.
In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE
Computer Society, 178–185. https://doi.org/10.1109/CLOUD.2018.00030

[70] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. Pex: A permission check analysis framework for linux
kernel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). USENIX
Association, 1205–1220.

Session 3B: Operating Systems CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

778

https://github.com/linux-pam/linux-pam/releases/tag/v1.5.1
https://github.com/linux-pam/linux-pam/releases/tag/v1.5.1
https://github.com/linux-pam/linux-pam/blob/v1.5.1/modules/pam_limits/pam_limits.c##L984
https://github.com/linux-pam/linux-pam/blob/v1.5.1/modules/pam_limits/pam_limits.c##L984
https://doi.org/10.1109/MASCOTS50786.2020.9285946
https://en.wikipedia.org/wiki/Netfilter##Connection_tracking
https://en.wikipedia.org/wiki/Netfilter##Connection_tracking
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/OS-level_virtualization
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1109/SP.2018.00017
https://doi.org/10.1109/CLOUD.2018.00030

	Abstract
	1 Introduction
	2 Background
	2.1 Linux Namespaces
	2.2 Linux Control Groups

	3 Abstract Resource Attacks
	3.1 Weaknesses in OS-level Virtualization
	3.2 Attacks on Process Management
	3.3 Attacks on Memory Management
	3.4 Attacks on Storage Management
	3.5 Attacks on IO Management
	3.6 Attacking FreeBSD and Fuchsia Kernels
	3.7 Summary

	4 Static Analysis of Container-Exhaustible Abstract Resources
	4.1 Identification of Kernel Shareable Abstract Resources
	4.2 Container-Controllability Analysis
	4.3 Analysis Results

	5 Abstract Resource Attacks On Cloud Platforms
	5.1 Environment Setup and Ethical Considerations
	5.2 Selection of Abstract Resources
	5.3 Attacking Results on Cloud Platforms
	5.4 Attacking gVisor
	5.5 Summary

	6 Mitigation Discussions
	7 Related Work
	7.1 Virtualization Techniques
	7.2 Resource Isolation
	7.3 Container Security

	8 Conclusion
	Acknowledgments
	References

