
Making Memory Account Accountable:
Analyzing and Detecting Memory

Missing-account bugs for Container Platforms
Yutian Yang∗

Zhejiang University
Hangzhou, China

Wenbo Shen†
Zhejiang University

Key Laboratory of Blockchain and
Cyberspace Governance of Zhejiang

Province
Hangzhou, China

Xun Xie
Zhejiang University
Hangzhou, China

Kangjie Lu
University of Minnesota, Twin Cities

Minneapolis, United States

Mingsen Wang
Zhejiang University
Hangzhou, China

Tianyu Zhou
Zhejiang University
Hangzhou, China

Chenggang Qin
Ant Group

Hangzhou, China

Wang Yu
Ant Group

Hangzhou, China

Kui Ren
Zhejiang University
Hangzhou, China

ABSTRACT
Linux kernel introduces the memory control group (memcg) to
account and confine memory usage at the process-level. Due to its
flexibility and efficiency, memcg has been widely adopted by con-
tainer platforms and has become a fundamental technique. While
being critical, memory accounting is prone to missing-account bugs
due to the diverse memory accounting interfaces and the massive
amount of allocation/free paths. To our knowledge, there is still no
systematic analysis against the memory missing-account problem,
with respect to its security impacts, detection, etc.

In this paper, we present the first systematic study on the mem-
ory missing-account problem.We first perform an in-depth analysis
of its exploitability and security impacts on container platforms. We
then develop a tool named MANTA (short for Memory AccouNT-
ing Analyzer), which combines both static and dynamic analysis
techniques to detect and validate memory missing-account bugs
automatically.

Our analysis shows that all container runtimes, including runC
and Kata container, are vulnerable to memory missing-account-
based attacks. Moreover, memory missing-account can be exploited
to attack the Docker, the CaaS, and the FaaS platforms, leading to
memory exhaustion, which crashes individual node or even the
∗Y. Yang, W. Shen, M. Wang, and K. Ren are also with the ZJU-Hangzhou Global
Scientific and Technological Innovation Center and the Jiaxing Research Institute,
Zhejiang University.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’22, December 5–9, 2022, Austin, TX, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9759-9/22/12. . . $15.00
https://doi.org/10.1145/3564625.3564634

whole cluster. Our tool reports 53 exploitable memory missing-
account bugs, 37 of which were confirmed by kernel developers
with the corresponding patches submitted, and two new CVEs are
assigned. Through the in-depth analysis, automated detection, the
reported bugs and the submitted patches, we believe our research
improves the correctness and security of memory accounting for
container platforms.

CCS CONCEPTS
• Security and privacy → Operating systems security; Virtu-
alization and security.

KEYWORDS
Cloud infrastructure, Linux kernel, memory accounting, missing-
account, DoS attack
ACM Reference Format:
Yutian Yang, Wenbo Shen, Xun Xie, Kangjie Lu, Mingsen Wang, Tianyu
Zhou, Chenggang Qin, Wang Yu, and Kui Ren. 2022. Making Memory
Account Accountable: Analyzing and Detecting Memory Missing-account
bugs for Container Platforms. In Annual Computer Security Applications
Conference (ACSAC ’22), December 5–9, 2022, Austin, TX, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3564625.3564634

1 INTRODUCTION
Accounting and limiting memory usage is a core functionality of
every operating system kernel. In particular, Linux kernel intro-
duces the memory control group (memcg), which can account and
limit memory usage at the process-level. Therefore, compared with
virtual-machine (VM) based memory partition techniques, memcg
is more fine-grained and lightweight.

Due to its flexibility and efficiency, memcg has been widely
adopted by container platforms. It is known that container plat-
forms rely on resource sharing heavily to improve the utilization of
their hardware resources. While memcg provides the only way to

869

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-2899-0117
https://doi.org/10.1145/3564625.3564634
https://doi.org/10.1145/3564625.3564634

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yang et al.

account and limit the memory usage of containers at the process-
level. As a result, popular container platforms, such as Docker [17],
the Container-as-a-Service platform (e.g., OpenShift) [23], and the
Function-as-a-Service platform (e.g., OpenWhisk) [30], all adopt
memcg to control the memory usage of their containers. Moreover,
even the VM-based container runtime—Kata container [3] also uses
memcg to limit the memory of container threads and other service
threads on the host machine. Besides, Open Container Initiative
(OCI) certification requires that container runtimesmust usememcg
in order to be certified [4]. Therefore, memcg has become a funda-
mental technique for container platforms and cloud computing.

Unfortunately, while being widely used, memcg is error-prone
due to its complex nature. Specifically, Linux kernel chooses to in-
sert memory accounting interfaces into the memory allocation/free
paths to realize accounting, which may easily introduce memory
missing-account (the allocated memory is not accounted) bugs due
to the highly complicated memory usage and the massive num-
ber of memory usage-related interfaces and code paths. Moreover,
even if the accounting interfaces are in the correct positions, their
accounting behaviors are conditional and controlled by the account-
ing flags, which we find is often missing. Consequently, we find
that memory missing-account bugs are common.

However, evenmemcg has been usedwidely, its memorymissing-
account bugs have never been analyzed systematically. The status
quo of memcg resulted from two causes. First, it has never been
clear what security impacts memory missing-account bugs would
incur or whether they are exploitable at all. As a result, missing-
account bugs were ignored by kernel developers, and no particular
efforts have been put into eliminating these problems. Second, there
is no automated detection of memory missing-account bugs. As pre-
viously discussed, memory accounting design and implementation
are complex and deeply integrated into the complicated memory
management subsystem of Linux kernel. As a result, it is hard to
understand the accounting design and policy correctly, even for
experienced users. For example, we find that the Docker official
website mistakenly claims that “memory charge is split between the
control groups” for the page cache, and that “when a cgroup is termi-
nated, it could increase the memory usage of another cgroup” [17].
As a result, without the automated detection, it is virtually impossi-
ble to reason about the correctness of memory accounting manually.
Even worse, whether memory missing-account bugs are detectable
and how it can be detected are still open questions.

This paper thus conducts the first systematic analysis and de-
tection against the Linux memory missing-account bugs. We first
perform an in-depth analysis to understand the exploitability and
security impacts of the memory missing-account bugs on container
platforms. We then develop a tool named MANTA (short for Mem-
ory AccouNTing Analyzer), which combines both static and dy-
namic analysis techniques to automatically detect memory missing-
account bugs. Our analysis shows that not only normal container
runtimes (e.g., runC), but also secure container runtimes (e.g., Kata
container) are vulnerable to memory exhaustion attacks caused
by memory missing-account bugs. Even worse, memory missing-
account bugs can be exploited to attack the Docker, the CaaS, and
the FaaS platforms, which crashes container nodes or even the
whole cluster.

Given the complexity of memcg, memory missing-account detec-
tion faces two challenges. First, there is no documentation nor

existing study defining memory accounting interfaces used by
memcg. Existing works [20, 37] adopt natural language process-
ing or wrapper function analysis to identify memory allocation
interfaces. However, these techniques cannot apply to accounting
interface directly due to unmatched heuristics. To address the prob-
lem, MANTA proposes the counter-based interface identification to
detect all memory accounting related interfaces automatically. The
key observation is that all memory accounting interfaces finally
increase/decrease corresponding page counters in their implemen-
tation. The identification starts from page counter modification and
iterates on the whole call graph to identify accounting interfaces
precisely.

Second, it is challenging to analyze the mappings between mem-
ory allocation andmemory accounting. Such analysis is complicated
by the deep and nested execution paths from memory allocation
sites to memory accounting sites. It also needs to trace the data flow
between the allocated pages and the accounted pages to get the
correct alias-set. Moreover, the accounting could be conditional due
to the control of conditional flags. Accordingly, MANTA proposes
the alloc-charging mapping analysis and accounting flag analysis
to address this challenge. Besides, to validate the detected memory
missing-account bugs, MANTA further employs Linux Test Project
to examine their triggerability and impacts.

With MANTA, we detect and report 53 exploitable bugs in
memcg, 37 of which have been confirmed by kernel developers
with patches that are either merged or pending for merging. The
reported bugs got two new CVEs (one is pending). In summary, this
work conducts an in-depth investigation that not only analyzes the
exploitability and impacts but also systematically detects memory
missing-account bugs. We believe the findings help kernel memcg
developers improve memory accounting in the future. This paper
makes the following contributions.

• In-depth analysis of exploitability and impacts. We design
new attacks to exploit the memory missing-account problems
on container platforms. Our attacks show that memory missing-
account bugs can be easily exploited to attack both normal and
secure container runtimes (i.e., runC and Kata container) and
popular container platforms (i.e., Docker, OpenShift, and Open-
Whisk), leading to container nodes or even the whole cluster
crashes.

• Automated detection with new techniques.We propose mul-
tiple analysis techniques to effectively detect memory missing-
account bugs, integrating both static analysis and dynamic vali-
dation. We implement the detection based on LLVM and evaluate
it with the Linux memory accounting. We further use Linux Test
Project (LTP) to validate the triggerability of the detected bugs.

• Community impact. We detect and report 53 exploitable mem-
ory missing-account bugs in Linux v5.10, 37 of which are con-
firmed by kernel developers. Two new CVEs are assigned (one
is pending). Our findings raise awareness of missing-account
impacts in the kernel community who also invited us to test their
downstream kernels. We plan to open-source our detection tool
to further help the community to improve the correctness and
security of memory accounting.

Ethical considerations. All the experiments and attacks in this
paper are conducted on a dedicated physical machine, which is used
solely by us. We responsibly disclosed all detected bugs to the Linux

870

Making Memory Account Accountable ACSAC ’22, December 5–9, 2022, Austin, TX, USA

1 struct mem_cgroup {
2 ...
3 struct page_counter memory;/* Both v1 & v2 */
4 union {
5 struct page_counter swap; /* v2 only */
6 struct page_counter memsw; /* v1 only */
7 };
8 /* Legacy consumer-oriented counters */
9 struct page_counter kmem; /* v1 only */
10 struct page_counter tcpmem; /* v1 only */
11 ...
12 }
13 struct page_counter {
14 atomic_long_t usage;
15 ...
16 unsigned long max;
17 ...
18 }
19
20 bool page_counter_try_charge(struct page_counter *counter, unsigned

long nr_pages, ...)↩→
21 {
22 struct page_counter *c;
23 ...
24 new = atomic_long_add_return(nr_pages, &c->usage);
25 if (new > c->max) {
26 ...
27 goto failed;
28 }
29 }

Figure 1: Memcg structure and accounting code.

kernel developers and submitted patches for all confirmed ones.
Moreover, we also reported false claims on the memory accounting
to the Docker team.

2 BACKGROUND
In this section, we first give background knowledge on Linux mem-
ory accounting (i.e., memcg). Next, we introduce container plat-
forms that use memcg.

2.1 Linux Memory Accounting
Memory accounting is a core functionality of every modern operat-
ing system kernel. Currently, Linux kernel employs the memory
control group (memcg) to realize memory accounting. Memcg ac-
counts for 4 types of memory: user, kernel, swap, and socket.
• user accounts all user space memory pages.
• kernel accounts kernel space memory pages and objects.
• swap accounts swap area pages.
• socket accounts the sock memory.
Memcg only accounts the memory for user space processes and
skips the accounting on kernel daemons or internal memory usage.
Note that Linux kernel v5.9 introduced object cgroup [7], which
accounts for sub-page kernel memory usage, such as kernel objects.
Object cgroup can charge objects to different cgroups, and thus
eliminates the per-memcg slab and saves lots of slab memory [8].
Accounting interfaces. Linux kernel uses different accounting
interfaces for different types of memory. Specifically, Linux kernel
uses mem_cgroup_charge to account user and swap memory and
__memcg_kmem_charge to account kernel memory. For kernel mem-
ory, Linux kernel also requires the __GFP_ACCOUNT flag to be set
during the memory allocation to account for kernel pages. Users
can interact with memcg through file interfaces. For example, a user
can check the total memory usage from memory.usage_in_bytes.

A memcg instance may contain multiple processes whose mem-
ory usage is accounted in it. Memcg is organized in a tree hierarchy.

As such, the memory limits on the parent node also affect all chil-
dren nodes. There are two versions of memcg: v1 and v2. Their
differences are mainly on hierarchical structures and user inter-
faces [34], with roughly the same implementations on accounting.
Both of them are in use currently. This paper refers to cgroups v1,
and most conclusions also hold on cgroups v2.
Data structures. The core data structure for memcg is mem_cgroup,
as shown in Figure 1, which represents a memcg instance. memcg
contains 4 page counters, corresponding to 4 types of accounted
memory as previously discussed. Each page counter uses usage
(Line 14) to count the number of allocated pages. While the to-
tal memory limit in pages is set in max (Line 16). At the memory
charging, Linux kernel calls charging interfaces which in turn calls
page_counter_try_charge, a function computing the total usage
(Line 24) and checking it with the max limit (Line 25).
Accounting challenges. Accounting memory usage correctly in
Linux kernel is very challenging due to numerous memory allo-
cation interfaces and massive allocation paths in Linux kernel. It
is difficult to mediate all memory allocation paths, and thus the
current accounting mechanism is error-prone.

2.2 Container Runtimes and Platforms
Memcg can account and limit memory usage at per-process level.
Compared with virtual-machine (VM) based memory control tech-
niques, memcg ismore fine-grained, lightweight, and flexible. There-
fore, memcg has been widely adopted by Docker, the Container-as-
a-Service (CaaS) and Function-as-a-Service (FaaS) platforms. Specif-
ically, CaaS platforms provide users with provisioned container
instances. Users on a CaaS platform can create/start/stop/delete
containers with customized container images. On the other hand,
instead of giving the users container instances, FaaS platforms allow
users to input a function and triggering rules, and creates container
instances automatically to execute the input function.

Docker and CaaS/FaaS platforms usually use the native container
runtime (i.e., runC) for container instances. To improve the isolation
among containers, people propose the secure container runtimes,
such as gVisor and Kata container. gVisor is a sandboxed container
runtime developed by Google. It runs each container on a user-space
kernel called Sentry. Sentry intercepts and handles most syscalls
from containers. Therefore, Sentry reduces the syscalls invoked on
the host kernel from containers. Besides the sandboxed runtime,
the container community also proposed to use virtualization to
isolate container instances. One such virtualized container runtime
is Kata container [24], in which each container instance runs in a
micro-VM for strong isolation.

Our experiments show that both normal and secure container
runtimes, including runC and Kata container, are vulnerable to
memory exhaustion attacks caused by missing-account bugs. More-
over, memory missing-account bugs can be exploited to attack the
Docker, the CaaS and the FaaS platforms, leading to memory ex-
haustion, which crashes individual nodes or even the whole cluster.

3 A STUDY OF EXPLOITABILITY AND IMPACT
The impact of memory missing-account bugs in production en-
vironments have never been systematically studied. They were
generally considered as a less-harmful correctness issue, instead

871

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yang et al.

1 static struct sem_array *sem_alloc(size_t nsems)
2 {
3 struct sem_array *sma;
4
5 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
6 return NULL;
7
8 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
9 if (unlikely(!sma))
10 return NULL;
11
12 return sma;
13 }

Figure 2: A missing-account bug in Linux kernel. This bug is
detected and fixed by us and confirmed by Linux developers.
Allocations at Line 8 are not charged. A new CVE is assigned.

of a security issue. In this section, we show that memory missing-
account bugs can be exploited to cause memory exhaustion on
container hosts and even the entire cloud platforms. In particular,
we analyze the exploitability of memory accounting issues to un-
derstand its practical impacts on container platforms. We design
new attacks to exploit missing-account bugs. These attacks show
that these bugs can be used to attack both normal and secure con-
tainer runtimes. Therefore, they can be exploited to cause DoS (host
machine crashes) and financial charge problems on popular CaaS
and FaaS container platforms. In the following, we first discuss the
threat model and assumption. Next, we present details of exploiting
memory missing-account problems.

3.1 Threat Model and Assumptions
In our experiments, we consider three container platforms—Docker,
the Container-as-a-Service (CaaS) platform, and the Function-as-a-
Service (FaaS) platform.We use thewidely deployed CaaS platform—
OpenShift as our CaaS platform and the popular OpenWhisk as our
FaaS platform. These three platform use the native runtime (i.e.,
runC) as their container runtime. All containers on these three plat-
forms are set up as non-privileged with default capabilities [2] and
seccomp configurations [18]. For the Docker and CaaS platforms,
users can create and start containers provisioned with self-defined
images through cloud-provided interfaces. This is reasonable as all
cloud vendors, including AWS, Google Cloud, and Azure, provide a
console for users to manage the container instances [11]. For FaaS
platforms, users can define, deploy, and trigger functions, where
each function instance runs in a container.

The attacker is a malicious user using Docker, CaaS, and FaaS
platforms. He/She can execute arbitrary code inside unprivileged
containers. However, the capability of the container is restricted
by the default capabilities. To further limit the attacker, we assume
that attackers cannot escape from containers nor escalate their
privileges. The attackers’ goal is to break the limit of memory
accounting and exhaust all memory on the host machine to crash
other containers, functions or the host machine.

For the attacking environments, we set up the Docker on a local
machine, while set upOpenShift andOpenWhisk clusters onGoogle
Cloud. For ethical considerations, the cluster is built on a dedicated
bare metal server provided by Google Cloud that is only used by
us, and thus will not impact other users.

0 20 40 60 80 100 120
Time (second)

0

2

4

6

8

10

12

14

Me
mo

ry
 (G

B)

0.125

14.630

Total memory
Actual memory usage
Memcg limitation
Charged memory usage

Figure 3: Memory exhaustion attacks on OpenShift.

3.2 Exploit Missing-Account Problem
In this section, we design new attacks to exploit themissing-account
problem in memory accounting to understand its impact. As previ-
ously discussed, current memory accounting in the Linux kernel
places memory accounting interfaces on the memory allocation
paths and memory unaccounting interfaces on the memory free
paths. However, Linuxmemorymanagement is complex, containing
thousands of memory allocation and free paths. It is hard to mediate
all of them with the correct interfaces. Especially, it is very easy to
miss one memory allocation paths, leading to the missing-account
problem.

Figure 2 shows a missing-account bug on semaphore objects
and semaphore arrays in the kernel, detected by MANTA and
confirmed by the Linux developer. The function sem_alloc allo-
cates a set of semaphores and uses sem_array to index them. The
allocation site at Line 8 calls kvzalloc to allocate memory for
sem_array and semaphores. The kernel only accounts for the al-
located memory when __GFP_ACCOUNT flag is set in the third pa-
rameter of kvzalloc. However, the call to kvzalloc at Line 8 does
not specify the __GFP_ACCOUNT flag, leading to missing-account on
the allocated semaphores and sem_array. Moreover, sem_alloc is
called by the semget system call to allocate semaphores. As a re-
sult, this missing-account bug can be easily triggered from the user
space. We further design new attacks to show that the above bug
can be exploited to break the container memory confinement and
exhaust all host memory.

3.2.1 Attacking Docker. We set up the Docker with default capa-
bilities and seccomp configurations. The semget system call does
not require any capabilities and is not blocked by the container
seccomp profile either. Therefore, in our experiments, the attacking
program in a non-privileged container can trigger semget system
call repeatedly to break the memory accounting limit and exhaust
all host memory. The host machine even crashes due to the out-of-
memory error. We reported the above bug and submitted patches to
Linux community. The patches have been merged to Linux mainline
and a new CVE is assigned to us.

3.2.2 Attacking the CaaS Platform. We set up a self-managed Open-
Shift cluster on Google Cloud, running all GCP VM instances. The
cluster allows users to create containers on a node with 15GB mem-
ory and Linux kernel v5.14.14. We set the memory limit for the

872

Making Memory Account Accountable ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Kata VM

Malicious pod

memcg

virtio-fsd

❶

Guest kernel

Host kernel

……

Host machine
❷

❸

❹

❶ Attacker’s pod allocates Posix
locks by fcntl() syscall.

❷ The guest kernel forwards the
request to virtio-fsd daemon.

❸ virtio-fsd allocates Posix locks
on the host machine.

❹ Missing-charged lock objects
lead to memory exhaustion.

Kata VM

Figure 4: Exploiting missing-account bugs to attack Kata
containers.

container to 128MB, which is a popular memory size used in public
cloud.

To launch the attack, the malicious user creates a container with
normal user privilege and allocates a large number of semaphores
inside the container. As shown in Figure 3, the memory usage of
the malicious container increases rapidly and reaches the node’s
limit in around 20 seconds. In contrast, the charged memory usage
for the attacker is extremely low, less than 1.4MB. As a result, the
malicious container breaks the 128MB memory limit and consumes
all 15GB memory on the host machine. The victim container on
the same node cannot perform any operations due to the lack of
memory.

3.2.3 Attacking the FaaS Platform. We evaluate the attack on Open-
Whisk, a popular open-source FaaS platform served as the infras-
tructure of IBM Cloud Functions [15]. The cluster node contains
15GBmemory and runs Linux kernel v5.11.0-1021-gcp. Thememory
limit for each function is set to 128MB.

To launch the attack, the malicious user creates a function which
consume semaphores repeatedly. Next, the malicious user triggers
the malicious functions repeatedly. As a result, the memory on
the node is exhausted rapidly. Note that when a node’s memory is
exhausted, consecutive malicious functions will be dispatched to
other nodes. As a result, the memory of all nodes in the cluster is
exhausted by the malicious users, leading to a cluster-level DoS.

3.2.4 Attacking the Secure Runtime. We further design new at-
tacks to evaluate memory missing-account impacts on the secure
runtime—Kata container. Our experiment shows thatmemorymissing-
account bugs allow attackers to break the isolation of Kata container
and attack the host machine and other container instances.

Kata container is a virtualized container runtime, in which each
container instance runs in a micro-VM for strong isolation. How-
ever, Kata micro-VM forwards file operations to the host machine,
which makes it vulnerable to the memory missing-account-based
attack. More specifically, by exploiting memory missing-account
bugs, attackers can exhaust host memory from the Kata container
within the micro-VM. As shown in Figure 4, the malicious user is a
normal user inside a container and issues fcntl syscall to allocate
a huge number of POSIX locks on a set of files. The guest kernel,
however, forwards the request to the virtio-fsd daemon running on
the host. Therefore, the daemon allocates POSIX locks in the host

Call Graph
Generation

Counter-based
Memcg Interface

Identification
§4.1Kernel IR Kernel

Call
Graph

Bug Report

IR

Accounting Flag
Analysis
§4.3

Alloc-Charging
Mapping Analysis

§4.2

Dynamic
Validation

§4.4

Figure 5: Architecture of MANTA.

kernel. Although the memory usage of virtio-fsd daemon is limited
by memcg, the memory used by lock objects is missing accounted.
As a result, the malicious container can exhaust all physical memory
on the host machine. We reported this attack to the Kata Container
community. They confirmed this problem and are applying a new
CVE for us.

3.3 Discussion
As demonstrated by the above attacks, themissing-account bugs can
be exploited to attack both normal and secure container runtimes,
Docker, and CaaS/FaaS platforms. The attacker can exploit these
bugs to exhaust all memory and crash container nodes or even the
whole cluster. Even worse, the attack requires only normal user
privilege and thus are easy to launch. Though memory missing-
account bugs can be exploited to attack container platforms, there is
no systematic study to detect and eliminate the bugs. Therefore, this
paper proposes the first memory accounting analysis tool named
MANTA, to detect these problems systematically.

4 MISSING-ACCOUNT BUG DETECTION
Given the criticalness of memory missing-account bugs, it is impor-
tant to detect these problems at an early stage before OS kernels
actually run in production scenario. Unfortunately, there is no tool
that can detect missing-account bugs with both high code coverage
and high precision. Therefore, we propose the MANTA(short for
Memory AccouNTing Analyzer) to automate the memory missing-
account bug detection.
Design goals.MANTA aims to automatically and systematically
detect memory missing-account bugs by analyzing the correctness
of accounting interface placement. Specifically, MANTA needs to
detect the memory missing-account bugs with high code coverage.
To achieve this, MANTA leverages static analysis to traverse all
memory allocation/free paths in Linux kernel. Moreover, MANTA
needs to detect the bugs with high precision. Therefore, MANTA
uses dynamic validation to test the dynamical triggerability of the
detected bugs.
Challenges. To achieve both goals, MANTA needs to overcome
the following challenges.

873

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yang et al.

1 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, unsigned
int nr_pages)↩→

2 {
3 struct page_counter *counter;
4 ...
5 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
6 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter))

{...}↩→
7 ...
8 }
9
10 bool page_counter_try_charge(struct page_counter *counter,
11 unsigned long nr_pages,
12 struct page_counter **fail)
13 {
14 struct page_counter *c;
15 for (c = counter; c; c = c->parent) {
16 long new;
17 new = atomic_long_add_return(nr_pages, &c->usage);
18 ...
19 }
20 ...
21 }
22
23 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
24 {
25 struct mem_cgroup *memcg;
26 int ret = 0;
27 memcg = get_mem_cgroup_from_current();
28 ...
29 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
30 if (!ret) {
31 page->mem_cgroup = memcg;
32 ...
33 }
34 ...
35 }

Figure 6: Counter-based memcg interface identification. Use
page_counter to detect charging/uncharging interfaces.

• C1.MANTA needs to identify the memory accounting interfaces,
which are not described in kernel documents nor studied by pre-
vious work. Existing interface identification methods for memory
allocation [20, 37] cannot be applied, as their heuristic does not
work for memory accounting interfaces.

• C2.MANTA needs to decide for each memory allocation whether
it is accounted and only accounted once. However, the execution
paths from memory allocation sites to memory accounting sites
tend to be deep, nested, and interleaved in Linux kernel. More-
over, even when such a path exists, the accounting can also be
affected by conditional flags as the accounting requires both the
accounting interface and the accounting flags §2.

Analysis techniques and workflow. The architecture of MANTA
is shown in Figure 5.With the whole kernel IR as the input, MANTA
first generates the kernel call graph. It then uses a page-counter-
based method to identify all accounting interfaces to address C1
(§4.1). Based on accounting interfaces, MANTA builds the mapping
between memory allocation/free and memory accounting (§4.2).
After that, MANTA uses accounting flag analysis to further analyze
the kernel memory accounting (§4.3). These two techniques address
C2. With the detected memory accounting bugs, MANTA further
evaluates each bug with our dynamic triggerability analysis based
on thousands of test cases from Linux Test Project (§4.4). MANTA
is currently implemented for Linux memory accounting. In the
following, we present the details of each analysis technique.

4.1 Counter-based Interface Identification
MANTA first needs to identify the memory accounting interfaces.
Such interfaces are diverse and can be custom. Existing techniques [20,

37] that use natural language processing (NLP) or wrapper func-
tion analysis would suffer from precision issues. We observe that
memory accounting has to maintain memory usage counters (i.e.,
page_counter), which are operated through specific atomic func-
tions. Memory usage counters can be easily located using type
matching. Therefore, by identifying the primitive functions that are
used for increasing/decreasing these counters, MANTA can auto-
matically find out all functions that perform increasing/decreasing
operations against accounting counters.

Specifically, MANTA walks through each kernel IR instruction
and checks whether it increases/decreases page_counter. If so,
MANTAmarks the function that directly contains the instruction as
a basic accounting function. Because in Linux kernel, page_counter
is solely used by memcg, our approach can achieve high accuracy.
MANTA then identifies accounting interfaces based on basic ac-
counting functions. MANTA uses DFS to traverse backward from
basic accounting functions and marks all visited functions on the
kernel call graph. MANTA stops the traverse whenever it reaches
a function outside the memcg subsystem because it cannot be a
memcg interface. Among thesemarked functions that account mem-
ory usage, if a function is invoked from the outside of the memcg
subsystem, i.e., source files definingmemcg functionalities, MANTA
marks it as an accounting interface. In this way, MANTA can iden-
tify all accounting interfaces.

Let’s use the example in Figure 6 to illustrate the steps in counter-
based interface identification. First, MANTA traverses all basic
blocks of all kernel functions. In __memcg_kmem_charge, it identi-
fies page_counter function (Line 6) and double confirms the first
argument is from a memcg. After that, MANTA steps into the
page_counter_try_charge and finds that it increases a field of
page_counter. As __memcg_kmem_charge calls the page_counter
function directly and increases the page_counter value, MANTA
concludes that __memcg_kmem_charge is a basic charging interface.
Similarly, for the interfaces that decrease the page_counter value,
MANTA marks them as uncharging interfaces. Moreover, MANTA
can distinguish interfaces for different memory types, as memcg
uses different page_counters for each memory type (§2). At Line 6,
page_counter_try_charge uses &memcg->kmem and MANTA thus
knows __memcg_kmem_charge is for kernel memory accounting.

Starting from the basic charging interfaces, MANTA then walks
up along the call chain to incrementally identify all charging in-
terface wrappers. If a function calls the basic charging interfaces
and the charging amount is from its arguments, MANTA will mark
it as a charging interface wrapper. Use the same example in Fig-
ure 6, __memcg_kmem_charge_page calls the basic charging interface
__memcg_kmem_charge (Line 29), while the charging amount 1 «
order is controlled by the arguments of __memcg_kmem_charge_page.
Therefore,MANTA considers __memcg_kmem_charge_page as a charg-
ing wrapper because it merely passes the charging amount to the ba-
sic charging interface and has no control over the charging amount.
MANTA uses the same approach to detect uncharging wrappers.

With the charging/uncharging interfaces, MANTA also needs to
identify memory allocation/free interfaces. MANTA adopts existing
techniques [20, 39] to produce the initial results. Moreover, on
observing that memory allocation/free interfaces increase/decrease
the nr_free counter of struct free_area, MANTA uses a similar
counter-based approach to increase the precision of the result.

874

Making Memory Account Accountable ACSAC ’22, December 5–9, 2022, Austin, TX, USA

1 struct page * __alloc_pages_nodemask(...)
2 {
3 ...
4 page = get_page_from_freelist(alloc_mask, order,

alloc_flags, &ac);,!
5 ...
6 if (memcg_kmem_enabled() && (gfp_mask &

__GFP_ACCOUNT) && page &&
unlikely(__memcg_kmem_charge_page(
page, gfp_mask, order) != 0)) {...}

,!
,!
,!

7 ...
8 return page;
9 }

10

11 static vm_fault_t do_anonymous_page(struct vm_fault
*vmf),!

12 {
13 ...
14 page = alloc_zeroed_user_highpage_movable(vma,

vmf->address);,!
15 if (!page)
16 goto oom;
17

18 if (mem_cgroup_charge(page, vma->vm_mm,
GFP_KERNEL)),!

19 ...
20 }

❶ Summary generation

❷ Origin-aware tracing, identify
the same page is used

❸ Analyze alloc-
charge mapping

❶

❷

❸

Algorithm 1: Alloc-Charging Mapping Analysis
Data: S = {s|s =

(f, EscapedPagesf , ChargedPagesf)}
1 function MappingAnalysis(kernel)
2 S GenSummary(kernel)
3 forall f in kernel do
4 forall callinst in f do
5 if IsAlloc(callinst.callee,S) then
6 page

GetAllocatedPage(callinst, S)
7 CheckPage(page, f,S)
8 end
9 end

10 end
11 end
12 function CheckPage(page, f,S)
13 if ¬IsCharged(page, f,S) then
14 if IsEscaped(page, f,S) then
15 // The page is leaked to the callers.
16 // It is handled in the loop at Line 3-10.
17 return
18 else
19 report missing-account
20 end
21 else if IsDupCharged(page, f,S) then
22 report redundant-account
23 end
24 end

Figure 7: MANTA’s alloc-charging mapping analysis. The high-level algorithm of the analysis is on the left, while a concrete
example is on the right.

4.2 Alloc-Charging Mapping Analysis
Intuitively, each allocated object should be accounted exactly once.
Otherwise, the object can be missing-accounted. Therefore, the
next step of MANTA is to build the relationship between memory
allocation/free and charging/uncharging. Based on the relationship,
MANTA can then identify cases that charge less or uncharge more
than allocated/freed memory as missing-account bugs. For brevity,
we focus on allocation and charging. The same technique can be
applied to analyze free-uncharging mapping.

It is non-trivial to analyze the mapping among allocation and
charging from source code because of deeply nested calling rela-
tionships and complex memory pointer propagation. To address
these problems, we develop the alloc-charging mapping analysis.
The basic idea is to first summarize the memory allocation and
charging within a function as its function summary, and then build
the memory alloc-charging mapping based on function summaries
to detect missing-account bugs. More specifically, we use access-
path-based analysis to generate per-function summary. The concept
of access path is first used in SATURN framework [40] to express
per-function summary for escaped objects (i.e., the object pointer
is leaked out of the current function).

As shown by the left-side algorithm in Figure 7, MANTA first
generates function summaries for all functions (Line 2) ❶. Next, for
a function 𝑓 , by gathering function summaries of its callees and ana-
lyzing the memory allocation sites (IsAlloc), MANTA can build the
alloc-charging mapping for all non-escaped objects within 𝑓 (Line
4-9). Specifically, MANTA substitutes the variables in callee sum-
maries with arguments passed to the callee to calculate the allocated
pages in 𝑓 ❷, which is called origin-aware tracing. Then MANTA
analyzes alloc-charge mapping inside 𝑓 by calling CheckPage ❸.

In CheckPage, MANTA is able to report the missing-account bugs
for non-escaped objects (Line 19). For the escaped objects from 𝑓

(Line 14-18), they will be handled in a function (such as the caller
of 𝑓) eventually as all functions in the kernel are traversed (Line
3-10). Moreover, both IsCharged (Line 13) and IsDupCharged func-
tions (Line 21) conduct a data-flow analysis to connect the local
objects to the return values or the parameters of the callee func-
tions. In this way, they can trace a kernel object’s charging state
inter-procedurally using function summaries of callees.

We use the concrete example in the right side of Figure 7 to
demonstrate the algorithm. MANTA first generates summary for
the bottom memory allocation function __alloc_pages_nodemask
❶. MANTA identifies that page is returned by a lower function
get_page_from_freelist (Line 4), charged (Line 6), and returned
(Line 8). Therefore, page is both escaped and charged, and the
function summary should be (__alloc_pages_nodemask, retval,
retval). When MANTA analyzes do_anonymous_page at Step ❷, it
fetches the function summary of alloc_zeroed_user_highpage_mo
vable, which is a wrapper of __alloc_pages_nodemask and has the
same summary. MANTA identifies that page in do_anonymous_page
is already charged according to the function summary (Line 14).
When analyzing alloc-charge mapping inside do_anonymous_page
❸, MANTAfinds that thememory accounting at Line 18 is reachable
from Line 14 and that page could be charged again at Line 18. As a
result, MANTA reports a redundant-account warning in this case.
On the other hand, if a page is not charged in the current function
and does not escape, MANTA reports a missing-account bug.

4.3 Accounting Flag Analysis
We find that the mapping of allocation and charging sites alone is
not sufficient for detecting missing-account bugs because memory

875

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yang et al.

Table 1: Summary of recall evaluation. SA denotes
SLAB_ACCOUNT flag. GKA denotes GFP_KERNEL_ACCOUNT flag.

No. Affected Alloc. Removed Flag Detected
1 kernel/cred.c:687 SA Y
2 kernel/cred.c:217 SA Y
3 kernel/cred.c:258 SA Y
4 kernel/delayacct.c:36 SA Y
5 kernel/fork.c:170 SA Y
6 kernel/fork.c:1508 SA Y
7 fs/exec.c:1190 SA Y
8 kernel/fork.c:1556 SA Y
9 fs/file.c:293 SA Y
10 fs/fs_struct.c:114 SA Y
11 kernel/fork.c:1064 SA Y
12 kernel/fork.c:1349 SA Y
13 kernel/fork.c:348 SA Y
14 kernel/fork.c:356 SA Y
15 kernel/pid.c:180 SA Y
16 kernel/utsname.c:34 SA Y
17 security/security.c:533 GKA Y
18 kernel/groups.c:21 GKA Y
19 kernel/groups.c:23 GKA Y

charging is often conditional. In particular, Linux kernel accounts
kernel object memory only when a __GFP_ACCOUNT flag is passed to
the accounting interfaces. Therefore if the __GFP_ACCOUNT flag is not
provided, a memory accounting interface would still not account
the memory. As a result, analyzing the values of accounting flags is
critical to detecting missing-account bugs. MANTA thus conducts
the accounting flag analysis to determine whether accounting flag
__GFP_ACCOUNT is passed to accounting interfaces.

Bit-wise and inter-procedural analysis.MANTA adopts an
inter-procedural bit-wise data-flow tracing approach to achieve
accounting flag analysis. First, at the charging-site, MANTA checks
whether the GFP flag itself is a constant. If yes, MANTA directly
checks the bit of __GFP_ACCOUNT. Otherwise, MANTA recursively
traces the use-def chain of the flag until it can confirm its account-
ing flag bit. Although LLVM provides a value tracking analysis
pass [6] that can trace bit value propagation, the analysis is lim-
ited to intra-procedural. To track inter-procedural accounting bits,
MANTA extends the pass with two analysis rules. Specifically, when
MANTA traces the parameters of a function, it follows into all the
caller functions to trace the values passed to the parameters; when
MANTA traces the return value of a call site, it also follows into
the callee functions and traces all possible returned values. If the
__GFP_ACCOUNT is set, MANTAmarks the kernel memory as charged
at the allocation site. Otherwise, MANTA regards the memory as
not-charged even if the charging interfaces are in place.

The analysis on allocation from kmem_cache is slightly different,
as the allocation is also affected by the creation flag of kmem_cache.
All allocation from a kmem_cache is accounted if the kmem_cache
is created with the SLAB_ACCOUNT flag. Thus, for a kmem_cache re-
lated allocation, MANTA also finds the initialization site of the
kmem_cache and adopts the same accounting flag analysis technique
to compute the SLAB_ACCOUNT flag.

4.4 Dynamic Validation
Static analysis may have false positives. MANTA checks the static
reachability to system calls for each missing-account allocation and
filters out unreachable ones. However, statically reachable bugs are
not necessarily triggerable at runtime. MANTA thus further ana-
lyzes the triggerability of statically-detected bugs through dynamic
validation. Observing that Linux Test Project (LTP) [5] contains
test cases for all 300 system calls, we leverage these test cases to
examine the dynamical triggerability of the detected bugs. More
specifically, we first instrument the code to intercept each missing-
account allocation, so that we can confirm if it is actually reached.
Next, we run the syscalls and containers test suites (containing
1,469 test cases) of LTP to check whether the bug is triggered.

Moreover, we manually run existing tools or develop new test
cases to trigger the bugs that cannot be triggered by LTP. Some
of these bugs are closely related to specific kernel features and
cannot be triggered by general LTP test cases, e.g., kexec and selinux.
Therefore, we manually run related user-space tools to trigger them.
Others are due to specific syscall parameters uncovered by LTP and
we manually develop test cases to pass these parameters.

For the missing-account bugs that can be triggered dynamically,
we further develop the memory exhaustion proof-of-concept (PoC)
to assess their security risks. We develop the PoCs based on test
cases that trigger missing-account bugs. In particular, we repeat-
edly invoke syscalls that can trigger missing-account bugs in PoCs
and record the amount of the missing-accounted memory. More-
over, some missing-account allocations are subjected to certain
constraints, such as the ulimit and sysctl variables. Without loss
of generality, we adopt the same constraints settings with cloud
services like Amazon Fargate [9]. The details of these PoCs will be
presented in §5.2.

4.5 Implementation
We implement MANTA as a pass of LLVM12 with 4K lines of
C++ code. The analyzed Linux kernel is v5.10 with the default
configuration for x86-64. MANTA uses wllvm [10] and Clang to
generate IR bitcode for the whole kernel with default configurations.
The bitcode size of the vmlinux is 481MB. MANTA uses the PeX [43,
46] approach to resolve indirect calls and generate the call graph.
With the proposed techniques, MANTA is able to finish the analysis
in about three minutes, making it scalable enough to be applied to
every Linux major release.

5 MANTA RESULTS
In this section, we first present analysis results of MANTA. Next,
we evaluate the precision and recall of MANTA. After that, we
present the impact analysis and the bugs that are reported and fixed
by Linux kernel community. Finally, we discuss the limitations of
MANTA.

5.1 Result Overview
MANTA detects 242 missing-account bugs that are statically reach-
able from 273 syscalls via 60,590 different paths. Specifically, the
number of userspace triggerable bugs is 162, among which 134 bugs
are triggered by LTP, 23 bugs are triggered by existing tools, and 5
bugs are triggered by manually developed test cases. The remaining

876

Making Memory Account Accountable ACSAC ’22, December 5–9, 2022, Austin, TX, USA

Table 2: PoCs of the 47 bugs. Mis. Mem is short for missing-
accounted memory. Bug IDs are consistent with Table 3.

No. Related Syscalls Bug IDs Mis. Mem
1 semget, semop 30-32 >16GB
2 fcntl 20, 21 >16GB

3 io_uring_setup, 8-19 >16GBio_uring_register
4 prctl 33-35, 40, 41 >16GB
5 add_key 51-53 >16GB
6 fsopen 5-7 1167MB
7 io_uring_setup 8-13, 18, 19 835MB
8 perf_event_open 36, 37 801MB
9 timerfd_create, flock 20, 21, 28 441MB
10 timer_create 45 255MB

11 clone 23, 29, 38, 231MB39, 43, 44, 46
12 epoll_create 3 165MB
13 bpf 33-35 116MB
14 timerfd_create 28 210MB
15 rt_sigqueueinfo 42 141MB
16 memfd_create 47, 48 192MB
17 eventfd 2 84MB

80 bugs cannot be triggered and the failure of triggering mainly re-
sults from deep call paths (72 out of 80 cases). The rest 8 allocations
are either explicitly marked as exempted in kernel documentation
or for kernel internal usage. Note that the 72 non-triggered bugs
are not all false positives, as our test cases only cover a portion of
execution paths. Conservatively speaking, the precision of MANTA
is greater than 66.9% (162/242).

We also evaluate the recall of MANTA by manually removing
the accounting flags. More specifically, we first generate an eval-
uation set by removing existing accounting flags under kernel/
sub-directory. All affected allocation sites are collected in the eval-
uation set. In particular, we remove 11 SLAB_ACCOUNT flags and
replace 5 GFP_KERNEL_ACCOUNT with GFP_KERNEL in total, affecting
19 memory allocations, as shown in Table 1. We then run MANTA
on the modified kernel code and the evaluation shows that MANTA
can detect all 19 missing-account sites. Although the evaluated
sites are limited, it still indicates that MANTA has a high recall rate.
Additionally, MANTA does not find any redundant-account bugs.

5.2 Impact Analysis
As previously mentioned, to understand the impacts of the detected
bugs, we further develop proof-of-concepts (PoCs) based on LTP test
cases. More specifically, we have developed 17 PoCs, which cover
47 bugs can be repeatedly triggered from the user space, as shown
in Table 2.We develop and test the PoCs on aQEMUx86_64machine
with 16GB RAM. The Linux distribution is Debian Buster with Linux
kernel v5.10. All PoCs run in memcg confined environments and
with the default set of capabilities applied by Docker runtimes [2].
Besides the PoC covered bugs, we did not develop PoCs for the other
triggerable bugs due to the limit of time and our domain knowledge.
However, these bugs may also be triggered repeatedly and reliably
by the attacker who has corresponding domain knowledge.

These PoCs show that all of these 47 bugs can break memory
account limits. The missing-account memory in these PoCs ranges
from 100MB to over 16GB, indicating that these bugs in memcg
allow the attacker to use memory for free or even launch memory
exhaustion attacks. More specifically, 25 bugs covered by the first
five PoCs can be exploited to memory exhaustion attacks to the
host system. They can consume all the 16GB memory while only
being accounted for much less amount. For example, PoC-1 exploits
the Bug-30, which is shown in Figure 2 and discussed in §3.2. The
function sem_alloc allocates sem_array objects without accounting
flags, leading to Bug-30. In addition, all sem objects contained in a
sem_array are not charged either. As a result, users are not charged
for any kernel semaphores. Moreover, memory allocation affected
by Bug-31 and 32 are used to maintain sem_undo objects, so a user
could also create such objects for free.

We use PoC-1 as an example to demonstrate thatmissing-account
bugs can easily cause a system-wide DoS, which continues even
after the attacking process is terminated. The PoC repeatedly calls
semget to allocate 30,000 semaphore sets, with 30,000 semaphore
instances in each set. For each set, PoC-1 further calls semop to
create sem_undo objects for it. As a result, even though each sem
object takes a small amount of memory, all of these objects consume
much more than 16GB of memory and cause DoS. Even worse, the
memory is not freed after the PoC program is terminated because
sem objects continue to exist, leading to the persistent DoS attack.
The above PoC is practical under the default system configurations.
The semaphore number is mainly limited by the sysctl variable
kernel.sem, which allows 32,000 semaphore sets and 32,000 objects
in each set by default. We use 30,000 for PoC-1. In sum, the attacker
can easily turn a missing-account bug into a DoS attack.

5.3 Reporting to Linux Community
We have reported 53 bugs to the Linux kernel community, including
all 47 bugs that can be triggered by 17 user space PoCs and 6 bugs
that can be repeatedly triggered by kernel operations. The full list
of these bugs is listed in Table 3 of appendix A.

Among all reported bugs, 37 of them have been confirmed by
kernel developers. The patches for all of these 37 bugs are submit-
ted, with 18 are already merged and 19 are pending to be merged.
The patching process is slow because memcg subsystem does not
maintain its git sub-tree currently. Thus memcg maintainers do
not track submitted patches and expect that the patch authors will
push the patches upstream via other subsystem maintainers. This
introduces lots of extra discussions and reviews that slow down
the merge process significantly.

When communicating with the kernel developers, we find that
the kernel community are highly concerned about these bugs. One
kernel developer stressed that memcg is “not just rough accounting
estimation” and “unbound allocation which can be triggered by
userspace should be accounted”. Besides, kernel developers are very
interested in MANTA and invited us to test their kernels using our
tools and experiments.

5.4 Limitations
MANTA currently has the following limitations.

877

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yang et al.

Static analysis is not sound.MANTA’s analysis can miss missing-
account bugs due to path-insensitive function summaries. A func-
tion may not charge an allocated page in one of execution paths
while it charges the page in another path. In this case, MANTA still
summarizes the function as charged and misses missing-account
bugs in later analysis. On the contrary, if MANTA summarizes the
function as not-charged, it misses redundant-account bugs. In the
future, we plan to adopt path-sensitive summaries like SATURN
framework [40] to improve the soundness.
Dynamic triggerable test is not complete. Currently, MANTA
uses LTP test cases to test whether a statically-detect bug can be
triggered or not. The LTP test cases are limited. It is impossible for
these test cases to cover all possible execution paths in the kernel.
As a result, MANTA could miss some triggerable bugs due to the
incomplete code coverage. Therefore, one of our future work is to
develop more test cases and adopt fuzzing techniques to increase
the code coverage.

6 RELATEDWORK
In this section, we discuss existing works that are related to memory
accounting and resource accounting.

6.1 Memory Accounting
JRes [16] implements memory accounting interfaces for JVM. The
memory accounting interfaces charge memory usage during object
allocation and uncharge during garbage collection. However, JRes
does not implement a recharging mechanism for shared objects.
Price et al. [33] and MzScheme [38] propose consumer-based mem-
ory accounting schemes for user space run-time environment to
account subtasks’ memory usage. They choose to charge mem-
ory usage to its actual users rather than to the memory alloca-
tors. They modify the runtime garbage collector so that it can
uncharge an object before it is freed and recharge it to the entity
that holds its references. However, they are hard to be directly
adopted in kernel as implementing efficient enough garbage collect-
ing in kernel remains a challenge. VM-based work provides better
memory isolation and could resolve the per-process accounting
problems in monolithic kernels. However, traditional VM-based
schemes [1, 13, 25] are too heavy-weight and introduce high perfor-
mance overhead. Unikernel-based methods [26, 29, 32, 44] achieve
lower startup latency and higher through-puts but lack compatibil-
ity compared with container-based schemes [19, 35].

MANTA’s alloc-charging mapping analysis is similar to alloc-
free mapping analysis used in memory leak detection. Leak Checker
[40] uses a context- and path-sensitive analysis method to detect
memory leaks. Saber [36] and FaskCheck [14] use on-demand
sparse value-flow analysis to detect memory leaks. LeakFix [21] first
tries to locate memory free that leads to leaks and fix it. AutoFix [41]
detects and fixes memory leaks by combining static analysis and
runtime checks. PCA [27] uses selective flow-sensitive algorithm
to further speeds up inter-procedural data-flow analysis for mem-
ory leak detection. However, these work relies on either manual
input or specific heuristic to decide allocation/free interface, which
cannot be applied to identify memory accounting interfaces.

6.2 Resource Accounting
Houdini’s escape [22] leverages kernel bottom-half worker threads,
service processes, and interrupts to bypass confinement of con-
trol groups. However, it didn’t focus on memcg and didn’t analyze
the implementation of control groups either. Compared with Hou-
dini’s escape, our paper systematically defines possible problems
in memcg and identify and report 53 bugs in memcg. Yang et al.
proposes the concept of abstract resources and finds that exhaust-
ing these resources within containers lead to DoS attacks on host
machines [42]. Resource container [12] proposes an OS-level ab-
straction to account for whole-system resource usage. It is the first
work that describes the method to account general resources at the
per-thread level. Compared to previous work, resource container
works at system kernel and can account for resource consumption
in kernel caused by user threads. Zhang et al. [45] proposed to
charge CPU-time usage of kernel bottom-half processes to affected
user processes to improve fairness.

Perez et al. [31] observes that EVM’s gas metering is not con-
sistent with actual resource consumption, especially CPU cycles,
on working nodes. It shows the actual inconsistency further in-
creases when page cache works poorly, while the payer is charged
for the same amount of gas. The paper also proposes a method to
automatically synthesize payloads that can fully exploit the incon-
sistency. Liu et at. [28] finds the CPU time metering vulnerable on
various real-world cloud platforms. They propose 6 attacks that
could exploit CPU metering at process launch time or run time.

7 CONCLUSION AND FUTUREWORK
In this paper, we conduct the first systematic analysis and detection
against the Linux memory missing-account bugs. We perform an
in-depth analysis to understand the exploitability and security im-
pacts of the memory missing-account bugs on container platforms.
Our analysis shows that all container runtimes, including both nor-
mal and secure runtimes, are vulnerable to memory exhaustion
attacks resulting from missing-account bugs. Moreover, memory
missing-account bugs can be exploited to attack the Docker, the
CaaS, and the FaaS platforms, leading to the memory exhaustion,
which crashes the node or even the whole cluster.

We then propose MANTA, which combines both static and dy-
namic analysis techniques to automatically detect memory missing-
account bugs with both high code coverage and precision. Our
detection tool reports 53 exploitable memory missing-account bugs,
37 of which were confirmed by kernel developers, two new CVEs
are assigned. The result shows that MANTA effectively helps to
mitigate missing-account problems in memory accounting systems.
Our future work is to study how to account memory usage accu-
rately without mediating all memory allocation/free paths.

ACKNOWLEDGMENTS
The authors would like to thank all reviewers for insightful com-
ments. This work is partially supported by the National Natural
Science Foundation of China (Grants No. 62002317), by the National
Key R&D Program of China (Grant No. 2020AAA0107700), by the
Leading Innovative and Entrepreneur Team Introduction Program
of Zhejiang (Grant No. 2018R01005), and by the Ant Group Funds
for Security Research.

878

Making Memory Account Accountable ACSAC ’22, December 5–9, 2022, Austin, TX, USA

REFERENCES
[1] 2021. VMware ESXi: The Purpose-Built Bare Metal Hypervisor. https://

www.vmware.com/products/esxi-and-esx.html.
[2] 2022. Docker run reference. https://docs.docker.com/engine/reference/run/

#runtime-privilege-and-linux-capabilities.
[3] 2022. Host cgroup management. https://github.com/kata-containers/kata-

containers/blob/main/docs/design/host-cgroups.md.
[4] 2022. Linux Container Configuration. https://github.com/opencontainers/

runtime-spec/blob/main/config-linux.md#control-groups.
[5] 2022. Linux Test Project. https://linux-test-project.github.io/.
[6] 2022. LLVM Value Tracking Analysis. https://llvm.org/doxygen/

ValueTracking_8cpp.html.
[7] 2022. The new cgroup slab memory controller. https://lwn.net/Articles/824216/.
[8] 2022. New Linux Memory Controller. https://thenewstack.io/a-new-linux-

memory-controller-promises-to-save-lots-of-ram/.
[9] 2022. What is AWS Fargate? https://docs.aws.amazon.com/AmazonECS/latest/

userguide/what-is-fargate.html.
[10] 2022. Whole Program LLVM. https://github.com/travitch/whole-program-llvm.
[11] AWS. 2022. AWS Management Console. https://aws.amazon.com/console/.
[12] Gaurav Banga, Peter Druschel, and Jeffrey C Mogul. 1999. Resource containers: A

new facility for resource management in server systems. In OSDI, Vol. 99. 45–58.
[13] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. ACM SIGOPS operating systems review 37, 5 (2003), 164–177.

[14] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical memory
leak detection using guarded value-flow analysis. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 480–
491.

[15] IBM Cloud. 2022. IBM Cloud Functions. https://www.ibm.com/cloud/functions.
[16] Grzegorz Czajkowski and Thorsten Von Eicken. 1998. JRes: A resource accounting

interface for Java. ACM SIGPLAN Notices 33, 10 (1998), 21–35.
[17] Docker. 2022. Runtime metrics. https://docs.docker.com/config/containers/

runmetrics/.
[18] Docker. 2022. Seccomp security profiles for Docker. https://docs.docker.com/

engine/security/seccomp/.
[19] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-

uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467–481.

[20] Navid Emamdoost, Qiushi Wu, Kangjie Lu, and Stephen McCamant. 2021. De-
tecting Kernel Memory Leaks in Specialized Modules with Ownership Reasoning.
In In Proceedings of the 2021 Annual Network and Distributed System Security
Symposium (NDSS’21).

[21] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. 2015. Safe memory-leak fixing for c programs. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 459–470.

[22] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang. 2019.
Houdini’s Escape: Breaking the Resource Rein of Linux Control Groups. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1073–1086.

[23] Red Hat. 2022. Red Hat OpenShift. https://www.redhat.com/en/technologies/
cloud-computing/openshift.

[24] katacontainers. 2022. Kata Containers: The speed of containers, the security of
VMs. https://katacontainers.io/.

[25] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:
the Linux virtual machine monitor. In Proceedings of the Linux symposium, Vol. 1.
Dttawa, Dntorio, Canada, 225–230.

[26] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and
Vlad Zolotarov. 2014. OSv—optimizing the operating system for virtual machines.
In 2014 USENIX Annual Technical Conference (USENIX ATC 14). 61–72.

[27] Wen Li, Haipeng Cai, Yulei Sui, and David Manz. 2020. PCA: Memory Leak
Detection Using Partial Call-Path Analysis (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA.

[28] Mei Liu and Xuhua Ding. 2010. On trustworthiness of cpu usage metering and
accounting. In 2010 IEEE 30th International Conference on Distributed Computing
Systems Workshops. IEEE, 82–91.

[29] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles. 218–233.

[30] Apache OpenWhisk. 2022. Apache OpenWhisk: Open Source Serverless Cloud
Platform. https://openwhisk.apache.org/.

[31] Daniel Perez and Benjamin Livshits. 2020. Broken metre: Attacking resource
metering in EVM. In Network and Distributed Systems Security (NDSS) Symposium
2020.

[32] Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C
Hunt. 2011. Rethinking the library OS from the top down. In Proceedings of
the sixteenth international conference on Architectural support for programming
languages and operating systems. 291–304.

[33] David W Price, Algis Rudys, and Dan S Wallach. 2003. Garbage collector memory
accounting in language-based systems. In 2003 Symposium on Security and Privacy,
2003. IEEE, 263–274.

[34] Rami Rosen. 2016. Namespaces and Cgroups – the basis of Linux Contain-
ers. https://netdevconf .info/1.1/proceedings/slides/rosen-namespaces-cgroups-
lxc.pdf.

[35] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-containers:
Breaking down barriers to improve performance and isolation of cloud-native
containers. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. 121–135.

[36] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis. 254–264.

[37] Jianqiang Wang, Siqi Ma, Yuanyuan Zhang, Juanru Li, Zheyu Ma, Long Mai,
Tiancheng Chen, and DawuGu. 2019. Nlp-eye: Detectingmemory corruptions via
semantic-aware memory operation function identification. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). 309–321.

[38] Adam Wick and Matthew Flatt. 2004. Memory accounting without partitions. In
Proceedings of the 4th international symposium on Memory management. 120–130.

[39] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie
Lu. 2021. Understanding and Detecting Disordered Error Handling with Precise
Function Pairing. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association.

[40] Yichen Xie and Alex Aiken. 2005. Context-and path-sensitive memory leak
detection. In Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of
software engineering. 115–125.

[41] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2016. Automated memory
leak fixing on value-flow slices for c programs. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing. 1386–1393.

[42] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao Xiao, Tianyu
Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, et al. 2021. Demons in the shared
kernel: Abstract resource attacks against os-level virtualization. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
764–778.

[43] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. Pex: A permission check analysis framework for linux
kernel. In 28th USENIX Security Symposium (USENIX Security 19). 1205–1220.

[44] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li,
Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX: a
dynamic library operating system for simplified and efficient cloud virtualization.
In 2018 USENIX Annual Technical Conference (USENIXATC 18). 173–186.

[45] Yuting Zhang and Richard West. 2006. Process-aware interrupt scheduling
and accounting. In 2006 27th IEEE International Real-Time Systems Symposium
(RTSS’06). IEEE, 191–201.

[46] Jinmeng Zhou, Tong Zhang,Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed
Azab, RuowenWang, Peng Ning, and Kui Ren. 2022. Automatic Permission Check
Analysis for Linux Kernel. IEEE Transactions on Dependable and Secure Computing
(2022).

A REPORTED BUGS
As shown in Table 3, we have reported 53 missing-account bugs to
Linux community. 37 of them are confirmed by Linux community
and the corresponding patches are submitted. The source location
column indicates where the bugs reside in Linux kernel and function
name indicates the functions that contain the bugs. Allocation inter-
face indicates the missing-accounted memory allocation function.
Triggered by indicates the syscalls that can trigger the missing-
account bugs.

879

https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://github.com/kata-containers/kata-containers/blob/main/docs/design/host-cgroups.md
https://github.com/kata-containers/kata-containers/blob/main/docs/design/host-cgroups.md
https://github.com/opencontainers/runtime-spec/blob/main/config-linux.md#control-groups
https://github.com/opencontainers/runtime-spec/blob/main/config-linux.md#control-groups
https://linux-test-project.github.io/
https://llvm.org/doxygen/ValueTracking_8cpp.html
https://llvm.org/doxygen/ValueTracking_8cpp.html
https://lwn.net/Articles/824216/
https://thenewstack.io/a-new-linux-memory-controller-promises-to-save-lots-of-ram/
https://thenewstack.io/a-new-linux-memory-controller-promises-to-save-lots-of-ram/
https://docs.aws.amazon.com/AmazonECS/latest/userguide/what-is-fargate.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/what-is-fargate.html
https://github.com/travitch/whole-program-llvm
https://aws.amazon.com/console/
https://www.ibm.com/cloud/functions
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/config/containers/runmetrics/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://katacontainers.io/
https://openwhisk.apache.org/
https://netdevconf.info/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf
https://netdevconf.info/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf

ACSAC ’22, December 5–9, 2022, Austin, TX, USA Yang et al.

Table 3: Summary of 53 exploitable missing-account bugs. 37 bugs are confirmed by Linux kernel developers and the corre-
sponding patches are submitted. Out of these patches, 18 are merged and 19 are pending for merging. While the other 16 bugs
are pending to be confirmed.

Bug ID Source location Function name Allocation interface Triggered by Confirm Status Patch Status
1 arch/x86/kernel/ldt.c:157 alloc_ldt_struct kmalloc clone Confirmed Merged
2 fs/eventfd.c:417 do_eventfd kmalloc eventfd Pending -
3 fs/eventpoll.c:1014 ep_alloc kzalloc epoll_create Pending -
4 fs/fcntl.c:899 fasync_alloc kmem_cache_alloc fcntl Confirmed Merged
5 fs/fs_context.c:234 alloc_fs_context kzalloc fsopen Confirmed Merged
6 fs/fs_context.c:634 legacy_init_fs_context kzalloc fsopen Confirmed Merged
7 fs/fsopen.c:100 fscontext_alloc_log kzalloc fsopen Pending -
8 fs/io-wq.c:1089 io_wq_create kzalloc io_uring_setup Confirmed Pending
9 fs/io-wq.c:1093 io_wq_create kzalloc_node io_uring_setup Confirmed Pending
10 fs/io-wq.c:1114 io_wq_create kzalloc_node io_uring_setup Confirmed Pending
11 fs/io_uring.c:1180 io_ring_ctx_alloc kzalloc io_uring_setup Confirmed Pending
12 fs/io_uring.c:1184 io_ring_ctx_alloc kmem_cache_alloc io_uring_setup Confirmed Pending
13 fs/io_uring.c:1197 io_ring_ctx_alloc kmalloc io_uring_setup Confirmed Pending
14 fs/io_uring.c:7254 __io_sqe_files_scm kzalloc io_uring_register Pending -
15 fs/io_uring.c:7507 alloc_fixed_file_ref_node kzalloc io_uring_register Pending -
16 fs/io_uring.c:7546 io_sqe_files_register kzalloc io_uring_register Pending -
17 fs/io_uring.c:7853 io_uring_alloc_task_context kmalloc io_uring_setup Confirmed Pending
18 fs/io_uring.c:8044 io_mem_alloc __get_free_pages io_uring_setup Confirmed Pending
19 fs/io_uring.c:9541 io_register_personality kmalloc io_uring_register Pending -
20 fs/locks.c:346 locks_alloc_lock kmem_cache_zalloc flock, fcntl Confirmed Merged
21 fs/locks.c:258 locks_get_lock_context kmem_cache_alloc flock Confirmed Merged
22 fs/namespace.c:177 alloc_vfsmnt kmem_cache_zalloc mount Confirmed Merged
23 fs/namespace.c:3267 alloc_mnt_ns kzalloc clone Confirmed Pending
24 fs/notify/group.c:121 fsnotify_alloc_group kzalloc inotify_init1 Confirmed Merged
25 fs/notify/inotify/inotify_user.c:630 inotify_new_group kmalloc inotify_init1 Confirmed Merged
26 fs/select.c:658 core_sys_select kvmalloc select Confirmed Merged
27 fs/signalfd.c:278 do_signalfd4 kmalloc signalfd4 Pending -
28 fs/timerfd.c:412 timerfd_create kzalloc timerfd_create Pending -
29 ipc/namespace.c:45 create_ipc_ns kzalloc clone Confirmed Pending
30 ipc/sem.c:514 sem_alloc kvzalloc semget Confirmed Merged
31 ipc/sem.c:1853 get_undo_list kzalloc semop Confirmed Merged
32 ipc/sem.c:1938 find_alloc_undo kzalloc semop Confirmed Merged
33 kernel/bpf/core.c:117 bpf_prog_alloc alloc_percpu_gfp bpf, prctl Confirmed Merged
34 kernel/bpf/core.c:85 bpf_prog_alloc_no_stats __vmalloc bpf, prctl Confirmed Merged
35 kernel/bpf/core.c:89 bpf_prog_alloc_no_stats kzalloc bpf, prctl Confirmed Merged
36 kernel/events/core.c:11142 perf_event_alloc kzalloc perf_event_open Pending -
37 kernel/events/core.c:4443 alloc_perf_context kzalloc perf Pending -
38 kernel/nsproxy.c:56 create_nsproxy kmem_cache_alloc setns Confirmed Pending
39 kernel/pid_namespace.c:90 create_pid_namespace kmem_cache_zalloc clone Confirmed Pending
40 kernel/seccomp.c:1481 init_listener kzalloc prctl Pending -
41 kernel/seccomp.c:565 seccomp_prepare_filter kzalloc prctl Pending -
42 kernel/signal.c:435 __sigqueue_alloc kmem_cache_alloc rt_sigqueueinfo Confirmed Merged
43 kernel/time/namespace.c:91 clone_time_ns kmalloc clone Confirmed Pending
44 kernel/time/namespace.c:97 clone_time_ns alloc_page clone Confirmed Pending
45 kernel/time/posix-timers.c:458 alloc_posix_timer kmem_cache_zalloc timer_create Confirmed Merged
46 kernel/user_namespace.c:105 create_user_ns kmem_cache_zalloc clone Confirmed Pending
47 mm/hugetlb.c:868 resv_map_alloc kmalloc memfd_create Pending -
48 mm/hugetlb.c:869 resv_map_alloc kmalloc memfd_create Pending -
49 mm/slab_common.c:245 create_cache kmem_cache_zalloc clone Confirmed Pending
50 net/core/net_namespace.c:423 net_alloc kzalloc clone Pending -
51 security/keys/key.c:277 key_alloc kmem_cache_alloc add_key Confirmed Pending
52 security/keys/key.c:282 key_alloc kmemdup add_key Confirmed Pending
53 security/keys/key.c:81 key_user_lookup kzalloc add_key Confirmed Pending

880

	Abstract
	1 Introduction
	2 Background
	2.1 Linux Memory Accounting
	2.2 Container Runtimes and Platforms

	3 A Study of Exploitability and Impact
	3.1 Threat Model and Assumptions
	3.2 Exploit Missing-Account Problem
	3.3 Discussion

	4 Missing-account Bug Detection
	4.1 Counter-based Interface Identification
	4.2 Alloc-Charging Mapping Analysis
	4.3 Accounting Flag Analysis
	4.4 Dynamic Validation
	4.5 Implementation

	5 MANTA Results
	5.1 Result Overview
	5.2 Impact Analysis
	5.3 Reporting to Linux Community
	5.4 Limitations

	6 Related Work
	6.1 Memory Accounting
	6.2 Resource Accounting

	7 Conclusion and Future Work
	Acknowledgments
	References
	A Reported Bugs

