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Abstract—Code reuse attacks exploiting memory disclosure
vulnerabilities can bypass all deployed mitigations. One promis-
ing defense against this class of attacks is to enable execute-
only memory (XOM) protection on top of fine-grained address
space layout randomization (ASLR). However, recent works
implementing XOM, despite their efficacy, only protect programs
that have been (re)built with new compiler support, leaving
commercial-off-the-shelf (COTS) binaries and source-unavailable
programs unprotected.

We present the design and implementation of NORAX, a
practical system that retrofits XOM into stripped COTS binaries
on AArch64 platforms. Unlike previous techniques, NORAX
requires neither source code nor debugging symbols. NORAX
statically transforms existing binaries so that during runtime
their code sections can be loaded into XOM memory pages
with embedded data relocated and data references properly
updated. NORAX allows transformed binaries to leverage the
new hardware-based XOM support—a feature widely available
on AArch64 platforms (e.g., recent mobile devices) yet virtually
unused due to the incompatibility of existing binaries. Further-
more, NORAX is designed to co-exist with other COTS binary
hardening techniques, such as in-place randomization (IPR). We
apply NORAX to the commonly used Android system binaries
running on SAMSUNG Galaxy S6 and LG Nexus 5X devices. The
results show that NORAX on average slows down the execution
of transformed binaries by 1.18% and increases their memory
footprint by 2.21%, suggesting NORAX is practical for real-world
adoption.

I. INTRODUCTION

Modern commodity operating systems employ code in-

tegrity protection techniques, such as data execution pre-

vention (DEP), to prevent traditional code injection attacks.

Consequently, recent attacks [1], [2] increasingly leverage

code-reuse techniques to gain control of vulnerable programs.

In code reuse attacks, a target application’s control flow is

manipulated in a way that snippets of existing code (called

gadgets) are chained and run to carry out malicious activities.

Knowledge of process memory layout is a key prerequisite

for code-reuse attacks to succeed. Attackers need to know

the exact binary instruction locations in memory to assemble

the chain of gadgets. Commodity operating systems widely

adopt address space layout randomization (ASLR), which

loads code binaries at random memory locations unpredictable

to attackers. Without knowing the locations of needed code or

gadgets, attackers cannot build code-reuse chains.

However, memory disclosure attacks can use information

leaks in programs to de-randomize code locations, thus de-

feating ASLR. Such attacks either read the program code

(direct de-randomization) or read code pointers (indirect de-

randomization). Given that deployed ASLR techniques ran-

domize the load address of a large chunk of data or code,

leaking a single code pointer or a small sequence of code

allows attackers to identify the corresponding chunk, infer its

base address, and calculate the addresses of gadgets contained

in the chunk.

More sophisticated fine-grained ASLR techniques [3]–[7]

aim at shuffling code blocks within the same module to make

it more difficult for attackers to guess the location of binary

instructions. Nevertheless, research by Snow et al. [1] proves

that memory disclosure vulnerabilities can bypass the most

sophisticated ASLR techniques.

Therefore, a robust and effective defense against code-

reuse attacks should combine fine-grained ASLR with memory

disclosure prevention. Some recent works proposed to prevent

memory disclosures using compile-time techniques [8]–[10].

Despite their effectiveness, these solutions cannot cover COTS

binaries that cannot be easily recompiled and redeployed.

These binaries constitute a significant portion of real-world

applications that need protection.

XnR [11] is a recent work that enables executable-only

memory (XOM [12]), which prevents code in memory from

being read as data, and in turn, blocks leaking of code

locations. However, XnR implements XOM at the OS level via

paging-based access control, which can cause high overhead.

Moreover, XnR cannot directly protect COTS binaries that are

not originally built to make use of this protection.

Other defenses against memory disclosure follow the idea of

destructive code reads [13], [14]: code is destroyed upon being

read, and therefore cannot be later executed as part of a code

reuse exploit. Unfortunately, it has been shown that destructive

code reads can be bypassed through code reloading [15]. In

addition, such defenses are not suitable for Android, where

all apps load system libraries at the same locations [16].
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Therefore, a memory read in one app enables code reuse

attacks in any other app.

In this work, we propose NORAX 1, which protects COTS

binaries from code memory disclosure attacks. NORAX allow

COTS binaries to be loaded in hardware-enforced XOM,

a security feature supported by recent ARM CPUs (i.e.,

AArch64). Such CPUs are widely seen on today’s mobile

devices. Without NORAX, to use the XOM feature, binaries

need to be (re)built with the necessary compiler support. This

requirement stands in between the valuable security feature

and a large number of COTS binaries (e.g., all Android system

executables and libraries) that are already running on AArch64

CPUs but were not compiled with XOM support. NORAX

removes this requirement. It automatically patches existing bi-

naries and loads their code to XOM-enforced memory regions,

without affecting binaries’ normal execution. As a result,

binaries without special (re)compilation can benefit from the

hardware-backed XOM feature and be protected against code

memory disclosure. Further, when used together with ASLR,

NORAX enables robust mitigation against code reuse attacks

for COTS binaries. It is worth noting that we use Android as

the reference platform for building and evaluating NORAX.

However, NORAX’s approach and techniques are generally

applicable to other AArch64 platforms.

NORAX consists of four major components: NDisassem-
bler, NPatcher, NLoader, and NMonitor. The first two perform

offline binary analysis and transformation. They convert any

COTS binary built for AArch64 without XOM support into

one whose code can be protected by XOM during runtime.

The other two components provide supports for loading and

monitoring the patched, XOM-enabled binaries during run-

time. The design of NORAX tackles a fundamentally difficult

problem: identifying data embedded in code segments, which

are common in ARM binaries, and relocating such data

elsewhere so that during runtime code memory pages can be

made executable-only while allowing all embedded data to be

readable.

As a evaluation, we apply NORAX to Android system

binaries running on SAMSUNG Galaxy S6 and LG Nexus

5X devices. The results show that NORAX on average slows

down the transformed binaries by 1.18% and increases their

memory footprint by 2.21%, suggesting NORAX is practical

for real-world adoption.

In summary, our work makes the following contributions:

• We discover and address the gap between the highly

valuable XOM feature and existing binaries, which need

but cannot use the feature without recompilation.

• We design and implement a comprehensive system that

converts COTS binaries to be XOM-compatible without

1NORAX stands for NO Read And eXecute.

requiring source code or debugging symbols.

• We show that code-data separation problem, although

undecidable in principle, is in practice achievable on

AArch64 platforms using our novel embedded data de-

tection algorithm.

• We perform rigorous and extensive evaluations with

stripped system executables and libraries on Android and

show that NORAX is practical, effective and efficient.

The rest of the paper is organized as follows: In § II we

lay out the background for execute-only memory and explain

the code-data separation challenges tackled by NORAX; In

§ III we derive the requirements for a practical solution and

then present the design of our system; In § IV we discuss in

details the system implementation and the optimization for our

reference platform Android; We then examine the correctness

of NORAX and evaluate its performance in § V. We contrast

the related works in § VI and analyze the compatibility of

NORAX with other COTS hardening techniques and its current

limitations in § VII. We conclude the paper in § VIII.

II. BACKGROUND

NORAX makes use of the modern MMU support in

AArch64 architecture to create execute-only memory, which

is a hardware feature now widely available yet virtually

unused due to compatibility issues. To bridge the gap, NORAX

reconstructs COTS binaries running on commodity Android

smartphones to enforce the R ⊕X policy. In the rest of this

section, we explain the necessary technical background and

the challenges we face when building the system.

AArch64 eXecute-Only Memory (XOM) Support: AArch64

defines four Exception Levels, from EL0 to EL3. EL0 has the

lowest execution privilege, usually runs normal user applica-

tions; EL1 is usually for hosting privileged systems, such as

operating system kernel; EL2 is designed for hypervisor while

EL3 is for secure monitor.

In order to enforce the instruction access permission for dif-

ferent Exception Levels, AArch64 leverages the Unprivileged

eXecute Never (UXN) bit, Privileged eXecute-Never (PXN)

bit and two AP (Access Permission) bits defined in the page

table entry [17]. For the user space program code page, the

UXN bit is set to “0”, which allows the code execution at

EL0, while PXN is set to “1”, which disables the execution

in EL1. With such UXN and PXN settings, the instruction

access permissions defined by AP bits are shown in Table I.

It is easy to see that we can set the AP bits in page table

entry to “10”, so that the kernel running in EL1 will enforce

the execute-only permission for user space program, which is

running in EL0. In other words, the corresponding memory

page will only permit for instruction fetch for user space

program, while all read/write data accesses will be denied.
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TABLE I: Access permissions for stage 1 EL0 and EL1

AP[2:1] EL0 Permission EL1 Permission

00 Executable-only Read/Write

01 Read/Write, Config-Executable Read/Write

10 Executable-only Read-only

11 Read, Executable Read-only

However, the kernel still has the read permission to that page,

which means that it can help the user space program read

the intended memory area if necessary, but need to perform

security checks beforehand.

Position-Independent Binaries in Android: Position-

independent code (PIC) is the kind of code compiler generates

for a module that does not assume any absolute address, that

is, no matter where the module is loaded, it will be able

to function correctly. The mechanism works by replacing all

the memory accesses using hard-coded addresses with PC-

relative addressing instructions. Position-independent executa-

bles (PIE) are executables that employ PIC code. In Android,

ever since version 5 (codename: Lolipop), in order to fully

enjoy the benefit of ASLR, all the executables are required

to be compiled as PIE. To enforce this, Google removed the

support for non-PIE loading from the Bionic Linker [18].

Nowadays, smartphones equipped with AArch64 CPU are

most likely running Android OSes after Lolipop, meaning

the majority of them will only have binaries, including both

executables and shared libraries, that are compiled to be

position independent.

Code-Data Separation: To convert a stripped binary to be

XOM-compatible, there is one fundamental problem to solve,

namely code-data separation. Note that separating data from

code for COTS binaries is, in general, undecidable as it is

equivalent to the famous Halting Problem [19]. But we found

that in the scope of ARM64 position-independent binaries,

which are prevalent in modern Android and iOS [20] Phones,

a practical solution is possible. Basically, a feasible solution

should address the two following challenges.

1) Locating Data In Code Pages: We generally refer to data

residing in executable code regions as executable data. There

are two types of executable data allowed in ELF binaries.

• Executable sections: The first kind of data are those ELF

sections consisting of pure read-only data which could

reside in executable memory. Defined by contemporary

ELF standard, a typical ELF file has two views: linking

view and loading view, used by linker and loader respec-

tively. Linking view consists of ELF sections (such as

.text, .rodata). During linking, the static linker bundles

those sections with compatible access permissions to

form a segment – in this case, executable indicates read-

able. The segments then comprise the loading view. When

an ELF is being loaded, the loader simply loads each

of the segments as a whole into memory, and grant the

corresponding access permissions. A standard ELF has

two loadable segments. One is readable and executable,

which is normally referred as “code segment”. This

segment contains all the sections with instructions (.plt
and .text, etc.), and read-only data (.gnu.hash, .dynsym,
etc.); the other segment is readable and writable, referred

as “data segment”, it contains the program data as well as

other read/writ-able sections. For our goal to realize non-
readable code, we mainly focus on the code segment.

In this segment, generally only .plt and .text contain

instructions used for program execution, but as explained

before, they are mixed with other sections that only

need to be read-only, thus we cannot simply map the

memory page to execute-only as oftentimes these sections

could locate within the same page. For instance, Table II

shows the code segment layout of an example program,

all except the last two sections in this code segment

are placed within the same page. To make things more

complex, the segment layout varies for different ELFs.

• Embedded data: The second kind of data in the code

pages is those embedded data in the .text section. For

optimization purpose, such as exploiting spatial locality,

compilers emit data to places nearby their accessing code.

Note that albeit recent study [21] shows that in modern

x86 Linux, compilers no longer generate binaries that

have code interleaved with data, to the opposite of our

discovery, we found this is not the case for ARM, we

examined the system binaries extracted from smartphone

Nexus 5X running the factory image MMB29P, Table III

reveals that code-data interleaving still prevails in those

modern ARM64 Linux binaries, indicating this is a real-

world problem to be solved.

TABLE II: ELF sections that comprise the code segment of

the example program, the highlighted ones are locate in the

same page.

Section Name Address Type

.interp 0000000000000238 PROGBITS

.note.android.ident 0000000000000250 NOTE

.note.gnu.build-id 0000000000000268 NOTE

.gnu.hash 0000000000000288 GNU HASH

.dynsym 00000000000002c8 DYNSYM

.dynstr 00000000000005b0 STRTAB

.gnu.version 00000000000006e2 VERSYM

.gnu.version r 0000000000000720 VERNEED

.rela.dyn 0000000000000740 RELA

.rela.plt 0000000000000830 RELA

.plt 00000000000009a0 PROGBITS

.text 0000000000000ab0 PROGBITS

.rodata 0000000000000f08 PROGBITS

.eh frame hdr 00000000000010d0 PROGBITS

.eh frame 0000000000001110 PROGBITS
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TABLE III: Android Marshmallow system binaries that have

embedded data in Nexus 5X.

 

2) Updating Data References: In addition to finding out the

locations of executable data, we also need to relocate them and

update their references. It turns out that references updating

is also non-trivial. In our system, as shown in Table IV,

the majority of the ELF sections inside code segment are

expected to be relocated to a different memory location so that

appropriate permission can be enforced. The sections that are

left out, such as .interp and .note.∗ are either accessed only

by OS or not used for program execution so we can leave

them untouched. For those sections listed in Table IV, they

have complex interconnections, both internally and externally.

As shown in Table V, various types of references exist in a

given ELF. Due to this complexity, the references collection

is conducted across the whole NORAX system by different

components in different stages including both offline and

during load-time.

TABLE IV: Sections in the executable code page that are

handled by NORAX

(.gnu).hash .dynsym .dynstr .gnu.version .rela.dyn

.rela.plt .text (embedded data) .rodata .eh frame .eh frame hdr

TABLE V: ELF section reference types

Reference Type Example

Intra-section references .text refers to .text (embedded data)

Inter-section references .text refers to .rodata

External references dynamic linker refers to .dynsym, .rela.∗
Multiple external references C++ runtime/debugger refer to .eh frame

III. NORAX DESIGN

A. System Overview

The goal of NORAX is to allow COTS binaries to take

advantage of execute-only memory (XOM), a new security

feature that recent AArch64 CPUs provide and is widely avail-

able on today’s mobile devices. While useful for preventing

memory disclosure-based code reuse [1], [2], XOM remains

barely used by user and system binaries due to its require-

ment for recompilation. NORAX removes this requirement

by automatically patching COTS binaries and loading their

code to XOM. As a result, existing binaries can benefit rom

the hardware-backed protection against direct code memory

disclosure attacks. While we demonstrate NORAX on Android,

the ideas behind NORAX are generally applicable to any

AAarch64 platform.

Design Principles: To make NORAX widely useful in practice,

we set the following design principles for NORAX:

• P1 - Backward compatibility: Changes introduced by

NORAX to binaries must not break their standard struc-

tures or compilation conventions (i.e., patched binaries

can run on devices without NORAX support). Otherwise,

patched binaries may become incompatible with existing

loaders, linkers, or orthogonal binary-hardening solutions

(e.g., code diversification techniques). Furthermore, NO-

RAX must not make special assumptions about binaries

to facilitate analysis and patching.

• P2 - Completeness: NORAX must have complete cover-

age of embedded data. It must detect all embedded data in

a binary accessed by code and ensure that these accesses

still succeed when XOM enforcement is in place. On the

other hand, NORAX can only have very few, if not zero,

false positives (i.e., misidentifying code as data).

• P3 - Correctness: NORAX must not alter or break a

patched binary’s original function or behavior, needless

to say crashing the binary.

• P4 - Low Overhead: NORAX should not introduce im-

practical overheads to the patched binaries, including both

space overhead (e.g., binary sizes and memory footprint)

and runtime slowdown.

NORAX Workflow: NORAX consists of four major compo-

nents: NDisassembler, NPatcher, NLoader, and NMonitor, as

shown in Figure 1. The first two components perform offline

binary analysis and transformation and the last two provide

runtime support for loading and monitoring the patched,

XOM-compatible executables and libraries. In addition to

disassembling machine code, NDisassembler scans for all

executable code that needs to be protected by XOM. A major

challenge it solves is identifying various types of data that

ARM compilers often embed in the code section, including

jump tables, literals, and padding. Unlike typical disassem-

blers, NDisassembler has to precisely differentiate embedded

data from code in order to achieve P2 and P3 (§III-B). Taking

input from NDisassembler, NPatcher transforms the binary so

that its embedded data are moved out of code sections and

their references are collected for later adjustment. After the

transformation, NPatcher inserts a unique magic number in the

binary so that it can be recognized by NLoader during load-

time. NPatcher also stores NORAX metadata in the binary,

which will be used by NLoader and NMonitor (§III-C). When

a patched binary is being loaded, NLoader takes over the

loading process to (i) load the NORAX metadata into memory,
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Fig. 1: NORAX System Overview: the offline tools (left) analyze the input binary, locate all the executable data and their

references (when available), and then statically patch the metadata to the raw ELF; the runtime components (right) create

separated mapping for the executable data sections and update the recorded references as well as those generated at runtime.

(ii) adjust the NPatcher-collected references as well as those

dynamically created references to the linker-related sections

(e.g .hash, .rela.*), and (iii) map all memory pages that

contain code to XOM (§III-D). During runtime, NMonitor,

an OS extension, handles read accesses to XOM. While such

accesses are rare and may indicate attacks, they could also be

legitimate because NPatcher may not be able to completely

recognize dynamic references to the relocated embedded data

(e.g., those generated at runtime). When there are missed data

references, the access will trigger an XOM violation, which

NMonitor verifies and, if legitimate, facilitates the access to

the corresponding data (§III-E).

B. NDisassembler: Static Binary Analyzer

NDisassembler first converts an input binary from machine

code to assembly code and then performs analysis needed

for converting the binary into an XOM-compatible form. It

disassembles the binary in a linear sweep fashion, which

yields a larger code coverage than recursive disassembling

[21]. However, the larger code coverage comes at a cost

of potentially mis-detecting embedded data as code (e.g.,

when such data happen to appear as syntactically correct

instructions).

NDisassembler addresses this problem via an iterative data

recognition technique. Along with this process, it also finds in-

structions that reference embedded data. The data recognition

technique is inspired by the following observations:

• Although it is difficult to find all instructions referencing

some embedded data at a later point in the running

program, it is relatively easy to locate the code that

computes these references in the first place.

• To generate position-independent binaries, compilers can

only use PC-relative addressing when emitting instruc-

tions that need to reference data inside binaries.

• AArch64 ISA only provides two classes of instruc-

tions for obtaining PC-relative values, namely the ldr

(literal) instructions and adr(p) instructions.

NDisassembler uses Algorithm 1 to construct an initial set

of embedded data (IS) and a set of reference sites (RS).

For embedded data whose size cannot be precisely bounded,

NDisassembler collects their seed addresses (AS) for further

processing. As shown in Line 5–9 in Algorithm 1, since

the load size for ldr-literal instructions is known, the

identified embedded data are added to IS. On the other hand,

the handling for adr instructions is more involved, as shown

in Line 10–27. NDisassembler first performs forward slicing

on xn — the register which holds the embedded data address.

All instructions that have data dependencies on xn are sliced,

and xn is considered escaped if any of its data-dependent

registers is either (i) stored to memory or (ii) passed to another

function before being killed. In either case, the slicing also

stops. If not all memory dereferences based on xn can be

identified due to reference escaping, the size of the embedded

data cannot be determined. Therefore, NDisassembler only

adds the initial value of xn to AS, as a seed address (Line

24–26).

Line 10–23 of Algorithm 1 deal with the sliced instructions.

If a memory load based on xn is found, RS is updated with the

location of the original address-taking instruction. Moreover,

NDisassembler analyzes the address range for each memory

load. Note that oftentimes the address range is bounded

because embedded data are mostly integer/floating point con-

stants, or jump tables. In the former case, the start address of
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Algorithm 1 Initial embedded data and references collection

INPUT:
code[] - An array of disassembly output

OUTPUT:
IS - Initial set of embedded data

AS - The set of seed addresses for embedded data

RS - The set of reference sites to embedded data

1: procedure INITIALSETCOLLECTION

2: IS = {}
3: AS = {}
4: RS = {}
5: for each (ldr-literal addr) ∈ code[] at curr do
6: size = MemLoadSize(ldr)

7: IS = IS ∪ {addr, addr+1, ..., addr+size-1}
8: RS = RS ∪ {curr}
9: end for

10: for each (adr xn, addr) ∈ code[] at curr do
11: escaped, depInsts = ForwardSlicing (xn)

12: unbounded = False

13: for each inst ∈ depInsts do
14: if inst is MemoryLoad then
15: RS = RS ∪ {curr}
16: addr expr = MemLoadAddrExpr(inst)

17: if IsBounded(addr expr) then
18: IS = IS ∪ {AddrRange(addr expr)}
19: else
20: unbounded = True

21: end if
22: end if
23: end for
24: if escaped or unbounded then
25: AS = AS ∪ {addr}
26: end if
27: end for
28: end procedure

memory load is typically xn plus some constant offset, while

the load size is explicit from the memory load instruction. In

the latter, well-known techniques for determining jump table

size [22] are utilized. In both cases, the identified embedded

data are added into IS. However, if there is a single memory

load whose address range cannot be bounded, NDisassembler

adds the seed address to AS.

If Algorithm 1 is not able to determine the sizes of all

embedded data, the initial set (IS) is not complete. In this

case, the seed addresses in AS are expanded using Algo-

rithm 2 to construct an over-approximated set of embedded

data (DS). The core functions are BackwardExpand (line

4) and ForwardExpand (line 5). The backward expansion

starts from a seed address and walks backward from that

Algorithm 2 embedded data set expansion

INPUT:
AS - The set of seed addresses for embedded data

IS - Initial set of embedded data

OUTPUT:
DS - conservative set of embedded data

1: procedure SETEXPANSION

2: DS = IS

3: for addr in AS do
4: c1 = BackwardExpand (addr, DS)

5: c2 = ForwardExpand (addr, DS)

6: DS = DS ∪ c1 ∪ c2

7: end for
8: end procedure

address until it encounters a valid control-flow transfer in-

struction: i.e., the instruction is either a direct control-flow

transfer to a 4-byte aligned address in the address space, or

an indirect control-flow transfer. All bytes walked through

are marked as data and added to DS. On the other hand,

the forward expansion walks forward from the seed address.

It proceeds aggressively for a conservative inclusion of all

embedded data. It only stops when it has strong indication

that it has identified a valid code instruction. These indicators

are one of the following: (i) a valid control-flow transfer

instruction is encountered, (ii) a direct control-flow transfer

target (originating from other locations) is reached, and (iii)
an instruction is confirmed as the start of a function [23]. In the

last case, comprehensive control-flow and data-flow properties

such as parameter passing and callee saves are checked before

validating an instruction as the start of a function.

Finally, DS contains nearly all embedded data that exists in

the binary. Although we could further leverage heuristics to

include undecodable instructions as embedded data, it is not

necessary because our conservative algorithms already cover

the vast majority (if not all) of them, and the rest are mostly

padding bytes which are never referenced. Theoretically, fail-

ure to include certain referenced embedded data could still

happen if a chunk of data can be coincidentally decoded as

a sequence of instructions that satisfies many code properties,

but in our evaluation of over 300 stripped Android system

binaries (V-A), we never encountered such a case.

RS contains a large subset of reference sites to the embed-

ded data. Since statically identifying all indirect or dynamic

data references may not always be possible, NDisassembler

leaves such cases to be handled by NMonitor.

C. NPatcher: XOM Binary Patcher

With the input from NDisassembler, NPatcher transforms

the binary in two steps. First, it relocates data out of the code
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segment so that the code segment can be loaded to XOM

and protected against leaks and abuses. Next, it collects and

prepares the references from code (.text) to the embedded data

(.text) and to .rodata section.

Data Relocation: An intuitive design choice is to move the

executable data out of the code segment. But doing so violates

the design principle P1 as the layout of the ELF and the offsets

of its sections will change significantly. Another approach is

to duplicate the executable data, but this would increase binary

sizes and memory footprint significantly, violating P4.

Instead, NPatcher uses two different strategies to relocate

those executable data without modifying code sections or

duplicating all read-only data sections. For data located in

code segment but are separated from code text (i.e., read-

only data), NPatcher does not duplicate them in binaries but

only records their offsets as metadata, which will be used by

NLoader to map such data into read-only memory pages. For

data mixed with code (i.e., embedded data), NPatcher copies

them into a newly created data section at the end of the binary.

The rationale behind the two strategies is that read-only data

usually accounts for a large portion of the binary size and

duplicating it in binary is wasteful and unnecessary. On the

other hand, embedded data is usually of a small size, and

duplicating it in binaries does not cost much space. More

importantly, this is necessary for security reasons. Without

duplication, code surrounding data would have to be made

readable, which reduces the effectiveness of XOM.

Data Reference Collections: NPatcher only collects the ref-

erences from .text to .text (embedded data) and to .rodata
because they can be statically recognized and resolved. Other

types of references listed in Table V are either from outside

the module or statically unavailable, which are handled by

NLoader.

For references to embedded data, NPatcher can directly

include them based on NDisassembler’s analysis results. But

there is one caveat – the instructions used to reference em-

bedded data (i.e., adr and ldr-literal) have a short addressing

range. Therefore, when we map their target data to different

memory pages, it is possible that the instructions cannot

address or reach the relocated data. To solve this issue without

breaking P1 (i.e., maintaining binary backward-compatibility),

NPatcher generates stub code to facilitate access to out-of-

range data. The instructions of short addressing range are

replaced with an unconditional branch instruction2, which

points to the corresponding stub entry. The stub code only

contains unconditional load and branch instructions pointing

2ADR can address +/- 1MB, while B(ranch) can access +/- 128MB, which

is far enough for regular binaries.

to fixed immediate offsets. This design ensures that these stub

entries cannot be used as ROP gadgets.

For references to the .rodata, there is no addressing capa-

bility problem, because adrp is used instead of adr. However,

a different issue arises. There are multiple sources from which

such references could come. We identify 5 sources in our

empirical study covering all Android system executables and

libraries. NPatcher can only prepare the locations of the first

three offline while leaving the last two to be handled by

NLoader after relocations and symbol resolving are done.

• References from code (.text): these are usually caused

by access to constant values and strings.

• References from symbol table (.dynsym): when a sym-

bol is located in .rodata, there will be an entry in the

symbol table, whose value field contains the address of

the exposed symbol.

• References from relocation table (.rela.dyn): for a

relocatable symbol located in .rodata, the relocation table

entry’s r addend field will point to the symbol’s address.

• References from global offset table (.got): when a vari-

able in .rodata cannot be addressed due to the addressing

limit(e.g., adrp can only address +/- 4GB), an entry in

the global offset table is used to address that far-away

variable.

• References from read-only global data (.data.rel.ro):
most binaries in Android disable lazy-binding. The

.data.rel.ro section contains the addresses of global con-

stant data that need to be relocatable. After the dynamic

linker finishes relocating them, this table will be marked

as read-only, as opposed to the traditional .data section.

Finally, the metadata (duplicates and references), the data-

accessing stub code (explained in the next point) and the

NORAX header are appended to the end of the original binary,

as shown in Figure 2. Note that by appending the NORAX-

related data to the end of the binary, we allow patched binaries

to be backward-compatible, thus meeting P1. This is because

the ELF standard ignores anything that comes after the section

header table. As a result, binaries transformed by NPatcher can

run on devices without NORAX support installed. They can

also be parsed and disassembled by standard ELF utilities such

as readelf and objdump. Moreover, NORAX-patched binaries

are compatible with other binary-level security enhancement

techniques.

D. NLoader: Plugin for Stock Loader and Linker

Binaries rewritten by NPatcher remain recognizable by and

compatible with the stock loader and linker. They can still

function albeit without the XOM protection. New data sections

added by NORAX, however, are transparent to the toolchain.

They require NLoader’s support to complete the binary loading

and references updating process before their code can be
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Fig. 2: The layout of ELF transformed by NORAX. The shaded

parts at the end are the generated NORAX-related metadata.

mapped in XOM. Other than the ones prepared by NPatcher,

as mentioned in § III-A, there are several types of references

to executable data (Table V) which are related to the linker

and only available at runtime. Built as a linker/loader plugin,

NLoader adjusts these references in the following steps:

• Ld-1: It parses and loads NORAX header into memory,

including information about the embedded data in .text
and the stub code accessing embedded data. Then, it

creates duplicated mappings for .rodata and the linker-

referencing sections3, which have been loaded by the

stock linker/loader.

• Ld-2: It updates the .dynamic section to redirect linker to

use the read-only copy of those relocated data sections.

• Ld-3: It collects the .rodata references from .got and

.data.rel.ro, which are only populated after the relocation

is done. It then adjusts all the collected data references

in one pass. Eventually, the memory access level of the

loaded module is adjusted to enforce the R⊕X policy.

The overall workflow of NLoader is shown in Figure 3.

It starts with the executable loading, which is done by the

OS ELF loader (Step 1 ). Then, the OS loader transfers

the control to the dynamic linker, which in turns creates a

book-keeping object for the just-loaded module. Meanwhile,

Ld-1 is performed to complete the binary loading. Next, the

binary’s corresponding book-keeping object is then populated

with references to those ELF sections used by the linker to

carry out relocation and symbol resolution in a later stage.

Ld-2 is then invoked to update these populated references.

At this point, the preparation for the executable is done. The

linker then starts preparing all the libraries (Step 2 ). This

process is similar to the preparation of executable, thus Ld-1

3The linker-referencing sections include .(gnu).hash, .dynsym, .dynstr,
.gnu.version, .gnu.version r, .rela.dyn, .rela.plt., etc.

Fig. 3: Bionic Linker’s binary loading flow, NLoader operates

in different binary preparing stages, including module loading,

relocation and symbol resolution.

and Ld-2 are called accordingly. When all the modules are

loaded successfully in previous steps with their book-keeping

objects populated, the linker walks through the book-keeping

objects to perform relocation and symbol resolution (Step 3 ).

In this step, Ld-3 is called for each of the relocated modules to

update all those collected references, including the ones from

.got and .data.rel.ro to .rodata. This is feasible because the

.got entries which reference to .rodata are populated upfront,

same as those in .data.rel.ro.

During runtime, the program may dynamically load or

unload new libraries (Step 4 ), as shown in Figure 3, which

is also naturally handled by NLoader. To boost performance,

once NLoader finishes updating the offline-updatable refer-

ences, it caches the patched binary so that it can directly load

the cached version without going through the whole references

adjustment process again a next time.

E. NMonitor: Runtime Enforcement and Safety-net

After being processed by the last three NORAX components,

a patched binary that follows the R⊕X policy is ready to run,

which is assisted by NMonitor. At runtime, the converted pro-

gram could still be running with some unadjusted references

to the executable data, which belong to the two following

possible categories.

• Missed references to embedded data: Although in our

evaluation we rarely see cases where an access violation

is triggered by missed embedded data references, such

situation, if mishandled, will cause a program crash.

NDisassembler is unable to discover such cases due to the
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limitation of static analysis. These missed data references

would trigger access violations. Note that references to

.rodata from .text do not have this problem, because

whenever an address is calculated that happens to point

at .rodata section, NDisassembler will mark it as a valid

reference regardless of whether a corresponding memory

load instruction is detected or not.

• References to .eh frame hdr and .eh frame: These

sections provide auxiliary information such as the ad-

dress range of functions, the stack content when a C++

exception is triggered, etc. The previous components are

unable to update them because they are used neither by

the converted module itself nor by the dynamic linker.

Instead, we found that C++ runtime and debuggers such

as gdb would reference and read into these two sections

for exception handling or stack unwinding.

NMonitor dynamically handles both categories of unad-

justed references. NMonitor responds to memory violations

caused by any attempted read access to XOM. It checks the

context and the data being accessed. If the context matches the

two cases discussed above and the address being accessed does

belong to the relocated data, NMonitor permits and facilitates

the access; otherwise, it terminates the program.

Specifically, NMonitor whitelists these two kinds of data

and ensures legitimate accesses to them can go through while

potential abuses by attackers cannot. For instance, NMonitor

only allows C++ runtime module to access the .eh frame
sections (updatable through sysctl). For the .text embedded

data, NMonitor only allows code from the over-approximated

hosting function to read them. Note that while this design

helps our system cope with those corner cases, the security

of our system is barely undermined for two reasons: (i) the

majority of the whitelisted data are indeed real data, which are

not even decodable or surrounded by non-decodable data(§ V).

(ii) Different data require the code from different regions to

access them; attackers cannot simply exploit one memory leak

bug to read across all these embedded data.

IV. IMPLEMENTATION DETAILS

NORAX is fully implemented based on two commercial

mobile phones, Samsung Galaxy S6 and LG Nexus 5X. In

this section, we present the implementation of NORAX on LG

Nexus 5X, which is equipped with Qualcomm Snapdragon 808

MSM8992 (4 x ARM Cortex-A53 & 2 x ARM Cortex-A57)

and 2GB RAM. The phone is running Android OS v6.0.1

(Marshmallow) with Linux kernel v3.14 (64-bit). Table VI

shows the SLoC of NORAX on Nexus 5X. In the following,

we provide more details about the implementation.

TABLE VI: The SLoC for all NORAX components.

A. Kernel Modification

We modified several OS subsystems in order to implement

the design discussed in § III. To start off, the memory man-

agement (MM) subsystem is modified to enable the execute-

only memory configuration (§ II) and securely handle the

legitimate page fault triggered by data abort on reading the

execute-only memory. Specifically, we intercept the page fault

handler, the do page fault() function, to implement the design

of NMonitor discussed in § III-E. Implementing the semantics

for all kinds of memory load instructions is error-prone and

requires non-trivial engineering effort, but above that, there is

one additional caveat, as page fault is one of the most versatile

events in Linux kernel that has very diversified usages, such

as copy-on-write (COW), demand paging and memory page

swappings etc. Also, accessing the same virtual address could

fault multiple times (e.g., First triggered by demand paging,

and then by XOM access violation). If not carefully examined,

irrelevant page fault events could be mistakenly treated as

XOM-related ones, which may cause the entire system to be

unstable or even crash. The solutions proposed in prior works

[11], [14] are not directly applicable here, because in ARM64

Linux kernel, to the best of our knowledge, there is not one

handy feature such as a flag pushed by the kernel, or a register

populated by the hardware to directly indicate whether the

fault is really triggered due to a read into the execute-only

page that we configure.

To precisely pinpoint the related page fault events, we devise

a series of constraints to filter the irrelevant ones. when a page

fault happens, the following checks are performed:

• Check if the faulting process contains NORAX converted

module, this is indicated by a flag set by NLoader when

loading a converted binary. This flag will be propagated

when the process forks a new child, and properly removed

if the new child does an exec to run a new program.

• Check the exception syndrome register on exception level

one (ESR EL1 [24]) for two fields: (i) Exception class

and (ii) Data fault status code. This ensures the fault is

triggered by the user space program, and it faults on the

last level page table entry (we only enforce XOM at pte

entries) because of permission violation.

• Check the VMA permission flags and only handle the

case of reading an execute-only page. All these restric-
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tions together ensure that we do not mistake other page

fault events with ours.

To verify the integrity of a violation triggered by XOM,

we extend the task struct to maintain a list of access policies

(§ III-E), one for each module. We also instrument the set pte
function to ensure the permission of a page must follow the

R⊕X policy. This way, we prevent the attacker from tricking

the OS to remap the execute-only memory through high-

level interfaces. The modified kernel subsystems also include

the file system (FS) and system calls where we instrument

the executable loader and implement the design of NLoader
plugins (§ III-D) respectively.

B. Bionic Linker Modification

In a running program, all the libraries needed by the

executable are loaded by the linker. In order to handle those

converted libraries and make the code regions of the whole

process execute-only, we directly modify the linker’s source

code to place hooks before the library loading and symbol

resolution routines as described in § III-D. One quirk of

the Bionic linker is that when loading libraries, it places

those modules right next to each other, leaving no space in-

between. This causes problems from multiple perspectives.

Firstly, it lowers the entropy of the address space randomness

thus undermines the effectiveness of ASLR. Secondly, it also

“squeezes” out the space for NLoader to load the NORAX-

related metadata. To resolve this issue, NPatcher encodes the

size of the total metadata into the NORAX header when it

recomposes the binary, and we instrument the linker such that

when it is loading a library it will leave a gap with the size

of the sum of the encoded number (zero for the unconverted

binaries) and a randomly generated nuance.

C. System Optimization

NORAX is designed with optimizations inherited in the

system, such as updating all possible and updatable references

of the relocated executable data to avoid page faults. However,

given that our implementation is targeting the commercial

Android systems, more optimizations could be done by taking

advantages of several handy features on Android. For example,

we can avoid triggering any page faults by deliberately delay

enabling the execute-only configuration during the loading of

a program until all the necessary modules are loaded and have

their symbols resolved. This is feasible because in Android,

for performance reasons, majority of the modules are compiled

with lazy binding disabled, that is to say, when loading such

module, the linker will promptly resolve all symbols it needs

to execute, instead of walking through the loaded modules

on a demanding basis during runtime to resolve symbols if

compiled otherwise.

Last but not least, a more precise accessing policy for

embedded data is achievable using the commonly available

.eh frame section. This section is compiled into pretty much

all the binaries shipped to user phones based on our prelim-

inary survey on multiple user-build AArch64 based Android

phones from major OEMs like Samsung, LG, HTC etc. For

clarity, we will not expand too much on the technical detail

of the .eh frame section. Basically, we can take advantage of

the PC range field for each Frame Description Entry (FDE) to

facilitate the analysis of NDisassembler.

V. EVALUATION AND ANALYSIS

In this section, we evaluate four aspects of NORAX: (i)

whether it breaks the functioning of patched binaries? (ii) how

accurate is its data analysis? (iii) how much overhead it incurs?

and (vi) how practical is it for wide adoption?

A. Functioning of Transformed Binaries

For this test, we selected 20 core system binaries to trans-

form, including both programs and libraries (Table IX). These

binaries provide support for basic functionalities of an Android

phone, such as making a phone call, installing apps, and

playing videos. We obtain these binaries from a Nexus 5X

phone that runs Android OS v6.0.1 (Marshmallow). These

stock binaries are compiled with compiler optimization and

without debugging metadata.

We tested the functionality of the transformed binaries using

our own test cases as well as the Android Compatibility

Test Suite (CTS) [25]. We modified the system bootstrapping

scripts (∗.rc files), which direct Android to load the system

binaries patched by NORAX. Table VII shows the specific

tests we designed for each system executable and library. For

example, surfaceflinger is the UI composer, which depends

on two libraries: libmedia.so and libstagefright.so. Zygote

(app process64) is the template process from which all app

processes are forked. It uses all of the patched binaries. While

running our functionality tests, we observed an attempt by the

linker to read the ELF header, which is located in the pages

marked executable-only. While this attempt was allowed and

facilitated by NMonitor, our system can be optimized to handle

this case during the patching stage instead.

We also ran the Android Compatibility Test Suite (CTS)

on a system where our transformed binaries are installed. The

suite contains around 127,000 test packages, and is mandatory

test performed by OEM vendors to assess the compatibility of

their modified Android systems. The test results are shown in

Table VIII. NORAX did not introduce any additional failure

than those generated by the vendor customization on the

testing devices. The results from both tests show that the

functioning of patched binaries is not interrupted or broken

by NORAX.

313



B. Correctness of Data Analysis

To thoroughly test the correctness of our embedded data

identification algorithm described in § III-B, we ran the data

analysis module of NDisassembler against a large test set con-

sisting of all 313 Android system binaries, whose sizes span

from 5.6KB (libjnigraphics.so) to 16.5MB (liblog.so), totaling

102MB. For these binaries, we compare the data identified

by NDisassembler with the real embedded data. Our ground

truth is obtained by compiling debugging sections (.debug *)

[26] into the binaries. We use an automatic script to collect

bytes in file offsets that fall outside any function range and

compare them with the analysis results from NDisassembler.

For the bytes that are not used by any of the functions, we

found that some of them are NOP instructions used purely for

the padding purpose; whilst some are just “easter eggs”, for

instance, in the function gcm ghash v8 of libcrypto.so, the

developers left a string “GHASH for ARMv8, CRYPTOGAMS
by <appro@openssl.org>”. These kinds of data were not

collected by NORAX. Since there are not references to them,

making them non-readable will not break any function.

For the tested binaries, NDisassembler correctly identified

all the embedded data. Only for 28 out of the 313 binaries did

NDisassembler reported false positives (i.e., code mistakenly

identified as embedded data), due to the over-approximate

approach we use (§ III-B). These rare false positive cases are

expected by our design and are handled by NMonitor during

runtime, as we discussed in § III-B. Table X shows a subset

of the results4.

TABLE VII: Rewritten program functionality tests.

4This subset was chosen to be consistent with the binaries used in the other

tests in this section. The complete set of all 313 Android system binaries,

which can be easily obtained, are not shown here due to the space limit.

TABLE VIII: System compatibility evaluation, the converted

zygote, qseecomd, installd, rild, logd, surfaceflinger, libc++,

libstagefright are selected randomly to participate the test to

see whether they can run transparently with other unmodified

system components.

TABLE IX: Binary transformation correctness test.

C. Overheads and Security Impact

Size Overhead: In our functionality test, the sizes of our

selected binaries range from ≈14K to ≈7M, as shown in

Table IX. After transformation, the binary sizes increased

by an average of 3.91%. Note that libm.so is an interesting

case, as its file size increased much more than others. After

manual inspection, we found that this math library has a lot of

constant values hardcoded in various mathematical functions

such as casinh(), cacos(). As an optimization, the compiler

embeds this large set of constant data into the code section to

fully exploit spatial locality, which translates to more metadata

generated by NORAX during the patching stage.

Performance Overhead: We used Unixbench [27] to measure

the performance of our system. The benchmark consists of two
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TABLE X: Embedded data identification correctness, empir-

ical experiment shows our analysis works well in AArch64

COTS ELFs, with zero false negative rate and very low false

positive rate in terms of finding embedded data. The last

column shows the negligible number of leftover gadgets in

the duplicated embedded data set.
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types of testing programs: (i) User-level CPU-bound programs;

(ii) System benchmark programs that evaluate I/O, process

creation, and system calls, etc. We ran the benchmark on

both the stock and patched binaries, repeating three times in

each round. We then derived the average runtime and space

overhead, which are given in Figure 4.

For the runtime overhead, the average slowdown introduced

by NORAX is 1.18%. The overhead mainly comes from the

system benchmark programs, among which Execl shows the

maximum slowdown. Investigating its source code, we found

that this benchmark program keeps invoking the exec system

call from the same process to execute itself over and over

again, thus causing NLoader to repeatedly prepare new book-

keeping structures and destroy old ones (§ III-D). This process,

in turn, leads to multiple locking and unlocking operations,

hence the relatively higher overhead. Fortunately, we do not

find this behavior common in normal programs. In addition,

some simple optimizations are possible: (i) employing a more

fine-grained locking mechanism; (ii) reusing the book-keeping

structures when exec loads the same image.

For space overhead, on average NORAX introduces 1.78%

increase in maximum resident memory and 3.90% increase in

file sizes. Table IX shows the file size increase for individual

Fig. 4: Unixbench performance overhead for unixbench bina-

ries, including runtime, peak resident memory and file size

overhead (left: user tests, right: system tests)

programs. Both resutls indicate negligible space overhead for

NORAX system. As explained in § III-C, the space overhead

is proportionate to the amount of embedded data as well as

their references. On the other hand, the NORAX header incurs

a fixed amount of space overhead. If not much embedded

data exist, the references and the header become the major

contributor to the space overhead.

Security Impact: The goal of NORAX is to retrofit the

R ⊕X property into ARM64 COTS binaries. It makes code

sections unreadable and redirects references of embedded data
to duplicate data in read-only memory pages. However, since

we duplicate embedded data, they are in theory still reusable

by adversaries. we conduct a gadget searching experiment in

the duplicated embedded data appended at the end of the

converted binaries. Table X shows the number of available

gadgets we found in those data. As the result shows, available

gadgets are actually very rare even in the binaries that have

a lot of embedded data such as libm.so, we believe this

is because the majority of those duplicated bytes are by

themselves not decodable. Also note that the shown numbers

are actually an upper bound of the available gadgets. Because,

in the executable code section, where the original embedded
data reside, the bytes that form the gadgets may not be placed

next to each other.

D. Practicality Assessment

Szekeres et al. [28] presented three main requirements for

a security solution to be practical:

• Protection: The security feature must enforce a strict

policy and has relatively low false positives and false

negatives.

• Cost: A practical system should incur negligible runtime

slowdown and space overhead.
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• Compatibility: The security system should not depend

on the source code availability. In addition, it should

be able to handle different modules individually and the

processed modules should work with those unmodified

ones.

We examine if NORAX meets these three criteria. NORAX

enforces the R ⊕X policy, similar to previous defenses that

needed source code [8], [9], which is the strongest defense

along the line of thwarting direct code read. Regarding the

cost, NORAX only introduces 1̃% slowdown for the majority

of the test cases, 2̃% extra memory and 4̃% disk consumptions,

showing its negligible cost. Finally, NORAX can protect COTS

binaries which come without any auxiliary information, and

it converts and loads different modules individually. Those

converted modules can run seamlessly with the unmodified

ones, indicating good compatibility.

VI. RELATED WORK

A. Code Reuse Attack Mitigations

Over the years, there has been an ongoing race between code

reuse attacks (or ROP in short) and corresponding defense

countermeasures. Such code reuse attacks keep evolving into

new forms with more complex attack steps (e.g., Blind-ROP

[2], JIT-ROP [1]). To defend against them, three categories of

countermeasures (e.g., ASLR, CFI, XOM) have been proposed

from different perspectives. Here we briefly review these de-

fenses, especially execute-only memory, which is the category

of this paper.

Control Flow Integrity (CFI): Enforcing CFI is a general

defense against attacks that hijack control flows, including

code reuse attacks. Proposed a decade ago by Abadi et al. [29],

CFI has been tuned by researchers over the years [30]–[35],

from its early form coarse-grained CFI to its current mature

appearance as fine-grained CFI. The fundamental difference is

that a coarse-grained CFI allows forward edges in the control

flow graph (CFG) to point at any node in the graph and back-

ward edges to return to any call preceded destination, whilst a

fine-grained CFI has a more precise set of destinations for both

forward and backward edges. bin-CFI [36] and CCFIR [37]

enforce the coarse-grained CFI policy on Linux and windows

COTS binaries respectively. Unfortunately, enforcing a fine-

grained CFI requires a more precise CFG to be built as the

ground truth, which is difficult to obtain in practice based on

static analysis, even when source code is available. In addition,

researchers found that it is still possible to launch code reuse

attacks when fine-grained CFI solution is in place due to the

difficulty of extracting a perfect CFG in practice [38]–[41].

Address Space Layout Randomization (ASLR): ASLR is a

practical and popular defense deployed in modern operating

systems to thwart code reuse attacks [42]. It randomizes the

memory address and makes the locations of ROP gadgets

unpredictable. However, the de-facto ASLR only randomizes

the base address of code pages. It becomes ineffective when

facing recent memory-disclosure-based code reuse attacks [1],

[2]. Such attack explores the address space on-the-fly to find

ROP gadgets via a memory disclosure vulnerability. Although

fine-grained ASLR increases the entropy of randomization,

such as compile-time code randomization [43] and load-time

randomization [3], [5]–[7], the memory disclosure attack is

not directly addressed, since code pages can still be read

by attackers [1]. Runtime randomization [44]–[46] is thus

proposed to introduce more uncertainty into the program’s

address space. Their effectiveness depends on who acts faster,

attacker or the re-randomization mechanism. Due to the need

of tracking all the code and data objects and correct their

references, these solutions either require compiler’s assist or

rely on runtime translation, which limit their applications and

incur non-trivial overhead.

eXecute-only Memory (XOM): To address the memory

disclosure attack, researchers proposed execute-only but non-

readable (R ⊕ X) memory pages to hinder the possibility

of locating reusable code (or ROP gadgets). However, one

fundamental challenge to achieve this defense is that it is non-

trivial to identify and separate legitimate data read operations

in code pages.

When source code is available, existing works like Readac-

tor [8], [9] and LR2 [10] rely on compilers to separate

data reads from code pages and then enforcing XOM via

either hardware-based virtualization or software-based address

masking. On the other hand, for COTS binaries, which are

more common in the real-world scenario, XnR [11] blocks

direct memory disclosure by modifying the page fault handler

in operating systems to check whether a memory read is inside

a code or data region of a process. However, it cannot handle

embedded data mixed in code region mentioned in Section

III-A. HideM [47] utilizes split-TLB features in AMD proces-

sors to direct code and data access to different physical pages

to prevent reading code. Unfortunately, recent processors no

longer support split-TLB.

Unlike previous works that mostly target x86, NORAX is

designed to transform legacy COTS to support XOM on top

of latest AArch64 processors. In particular, NORAX focuses

on the code-data separation problem of COTS binary on ARM,

which has not been systematically investigated before.

Destructive Code Read: Apart from execute-only memory,

a different type of approach is to prevent already-disclosed

executable memory from being executed. Rather than being

execute-only, code segments are not executable after their
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addresses and values have been leaked. Heisenbyte [13] and

NEAR [14] achieve this by overwriting the values of the

disclosed code addresses with random values (i.e., invalid

opcodes), while keeping the disclosed values in different

memory pages for legitimate data reads. Unfortunately, such

approach has to monitor every read access to the code pages,

which incurs more page faults and high overhead. In addition,

Snow et al. show that such destructive code read can still be

bypassed by reloading multiple code copies or inferring code

layout without reading it [15]. Since NORAX does not allow

the code regions to be read at all, it is not vulnerable to such

attacks.

B. Static Binary Analyses

In this subsection, we compare COTS solutions that have

analysis goal overlap with NORAX.

Executable Data Identification: Zhang et al. [36] and Tang

et al. [13] develop algorithms to identify jump tables embed-

ded in the code using heuristics based on well-defined data

structure patterns. This result is not sufficient for R ⊕ X

policy enforcement. NEAR [14] and HideM [47] adopt a

more aggressive analysis approach, computing CFG based

on similar heuristics for the analyzed binary, and mark all

the unknown regions as data. Although this approach has

merits such as being architecture-generic and is able to tackle

x86-specific challenges like various-length instructions, it in-

evitably incurs relatively high false positives had the CFG

construction process miss any indirect control flow transfer

target. Making a different design choice, NORAX does not

rely on overly aggressive approach or assumptions about data

structures. Instead, its analysis exploits the basic semantics of

AArch64 ISA and achieves a larger and more precise coverage.

Executable Data Access Check: Similar to HideM [47],

NORAX undertakes the route of whitelisting the range of

executable data. This is a strategy to achieve maximum com-

patibility in the case of missing reference update. However,

HideM does not impose restrictions on the accessing subject,

plus the fact that it has more false positives on identifying

embedded data which exposes more gadgets, hence weakening

the security. On the contrary, NORAX enforces configurable

data-read policy to ensure only the legitimate reads can

succeed, such as embedded data should only be read by (over-

approximated) hosting function, and linker-related sections

should only be read by the dynamic linker.

VII. DISCUSSIONS

A. Compatibility with Other COTS Hardening Solutions

Execute-only memory alone cannot defend against the ever-

evolving code reuse attacks. Thus, we bear in mind that it is

important to design NORAX to be compatible with other COTS

hardening solutions that provide fine-grained randomization

and control flow integrity. Following our design principles

(§ III-A), NORAX makes minimum structural changes to

binaries programs, which do not preclude running other binary

analysis and hardening solutions. For example, the size and

location of code and data objects remain unchanged. The

control flow properties are preserved. As a result, changes

by NORAX are self-contained and will not interfere with the

operations of those other solutions.

We examine two representative binary hardening solutions

as examples, In-place randomization (IPR) [4] and bin-CFI

[36]. IPR is a fine-grained ASLR solution and can be used

in tandem with NORAX. It has three transformation passes.

First, it substitutes instructions with semantically equivalent

ones. The only instruction NORAX could replace is adr used

to reference .text inline data. Since adr is the only instruction

available in AArch64 ISA that can obtain PC-relative reference

directly, IPR does not have any alternative candidates to

use. Second, IPR reorders instructions sequences that do not

have dependencies. NORAX is transparent to such reordering

because it does not alter or assume instruction sequences.

Third, IPR performs register reassignments. NORAX preserves

register usages and thus does not affect register reassignments.

Bin-CFI is a coarse-grained CFI solution for COTS binaries

and conceptually compatible with NORAX. It performs indirect

control flow (ICF) analysis and then instruments all the ICF

transfer instructions to ensure they follow control flow graphs.

NORAX only modifies data reference and data accessing in-

structions and does not impact CFG. Note that albeit designed

with maximum compatibility, NORAX does assume to run as

the last pass among other binary hardening techniques. This

ensures NORAX preserves all data references planted by other

passes if any.

B. Current Limitations

Unforeseeable Code: NORAX relies on static binary analysis

and rewriting. The current implementation cannot patch dy-

namically generated code (JIT Compilation) or self-modifying

code. In addition, NORAX cannot patch customized ELF

files consisting of unrecognizable sections that may contain

code and data. For instance, the .ARM.exidx and .ARM.extab
sections contained in the dex2oat program5 are not recognized

by the current implementation of NORAX. Nevertheless, these

limitations are shared by almost all static binary rewriting

works. It is worth noting that modules converted by NORAX

can run alongside programs of this kind seamlessly without

suffering any functionality lost.

5An optimization tool to convert applications’ byte code to native code.
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Indirect Memory Disclosure: NORAX prevents attackers

from directly reading the code to search for gadgets loaded

in memory. However, code pointers residing in data areas

such as stack and heap are still vulnerable to indirect memory

disclosure attacks, which can lead to whole function reuse or

call-preceded gadget reuse attacks [48], [49]. This limitation,

however, is shared by all related solutions using binary rewrit-

ing [11], [13], [14], [47]. In addition, a recent study [50] shows

even the most advanced source-code based techniques [8],

[9] are subject to attacks of this kind. We argue that defense

against indirect memory disclosure is another research topic

that warrants separate studies and is out of the scope for this

work.

VIII. CONCLUSION

We present NORAX, a comprehensive and practical system

that enables execute-only memory protection for COTS bina-

ries on AArch64 platforms. NORAX shows that identifying

data from code in COTS binaries, albeit generally undecid-

able, is in practice feasible under the scope of AArch64

platforms. To demonstrate its practicability, we implemented

NORAX on commodity mobile phones including Samsung

Galaxy S6 and LG Nexus 5X, and protect their stock system

binaries from direct memory disclosure attacks. Our evaluation

shows NORAX enforces strong protection, while at the same

time incurs negligible overhead–average 1.18% slowdown and

2.21% memory footprint, suggesting it is suitable for real-

world adoption.
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[38] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of

control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. IEEE, 2014, pp. 575–589.

[39] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the

gadgets: On the ineffectiveness of coarse-grained control-flow integrity

protection,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 401–416.

[40] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-

flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp. 161–

176.

[41] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,

and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-

grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,

pp. 901–913.

[42] P. Team, “PaX address space layout randomization (ASLR),” 2003.

[43] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Efficient techniques for com-

prehensive protection from memory error exploits.” in Usenix Security,

2005.

[44] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,

“Isomeron: Code randomization resilient to (just-in-time) return-oriented

programming.” in NDSS, 2015.

[45] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand live

randomization,” in Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy. ACM, 2016, pp. 50–61.

[46] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely

rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 268–279.

[47] J. Gionta, W. Enck, and P. Ning, “Hidem: Protecting the contents

of userspace memory in the face of disclosure vulnerabilities,” in

Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. ACM, 2015, pp. 325–336.

[48] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,

M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness

of control-flow integrity under stack attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.

ACM, 2015, pp. 952–963.

[49] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and

T. Holz, “Counterfeit object-oriented programming: On the difficulty

of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 745–762.

[50] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, C. L.

Stephen Crane, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and

H. Okhravi, “Address-Oblivious Code Reuse: On the Effectiveness

of Leakage Resilient Diversity,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS’17), Feb 2017.

319


