
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3165368, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Automatic Permission Check Analysis for Linux
Kernel

Jinmeng Zhou, Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed Azab, Ruowen Wang,
Kui Ren, Peng Ning

Abstract—Permission checks play an essential role in operating system security by providing access control to privileged
functionalities. However, it is challenging for kernel developers to scalably verify the soundness of existing checks due to the large
codebase and complexity of the kernel. In fact, Linux kernel contains millions of lines of code with hundreds of permission checks, and
even worse its complexity is fast-growing.
This paper presents PeX, a static Permission check error detector for LinuX, which takes as input a kernel source code and reports any
missing, inconsistent, and redundant permission checks. PeX uses KIRIN (Kernel InteRface based Indirect call aNalysis), a novel,
precise, and scalable indirect call analysis technique. Over the interprocedural control flow graph built by KIRIN, PeX automatically
identifies permission checks and infers the mappings between permission checks and privileged functions. For each privileged
function, PeX examines all possible paths to the function to check if necessary permission checks are correctly enforced. We evaluated
PeX on the latest stable Linux kernel v4.18.5 for three types of permission checks: Discretionary Access Controls (DAC), Capabilities,
and Linux Security Modules (LSM). PeX reported 45 new permission check errors, 17 of which have been confirmed by the kernel
developers.

Index Terms—Linux kernel, static analysis, permission check, bug detection.

F

1 INTRODUCTION

A CCESS control [1] is an essential security enforcement
scheme in operating systems. They assign users (or pro-

cesses) different access rights, called permissions, and enforce that
only those who have appropriate permissions can access critical
resources (e.g., files, sockets). In the kernel, access control is often
implemented in the form of permission checks before the use of
privileged functions accessing the critical resources.

Over the course of its evolution, Linux has employed three
different access control models: Discretionary Access Controls
(DAC), Capabilities, and Linux Security Modules (LSM). DAC
distinguishes privileged users (a.k.a., root) from unprivileged ones.
The unprivileged users are subject to various permission checks,
while the root bypasses them all [2]. Linux kernel v2.2 divided the
root privilege into small units and introduced Capabilities to allow
more fine-grained access control. From kernel v2.6, Linux adopted
LSM in which various security hooks are defined and placed on
critical paths of privileged operations. These security hooks can
be instantiated with custom checks, facilitating different security
model implementations as in SELinux [3] and AppArmor [4].

Unfortunately, for a new feature or a newly identified vulnera-

• J. Zhou, W. Shen and K. Ren are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou, China.
Email: {11921110,shenwenbo,kuiren}@zju.edu.cn;

• T. Zhang is with Samsung Electronics.
Email: ztong0001@gmail.com

• D. Lee is with Department of Computer Science, Stony Brook University.
Email: dongyoon@cs.stonybrook.edu

• C. Jung is with Department of Computer Science, Purdue University.
Email: chjung@purdue.edu

• A. Azab is with Facebook.
Email: amazab80@gmail.com

• R. Wang and P. Ning are with Google.
Email: {ruowenwang,pning}@google.com

• W. Shen is the corresponding author.

bility, these access controls have been applied to the Linux kernel
code in an ad-hoc manner, leading to missing, inconsistent, or
redundant permission checks. Given the ever-growing complexity
of the kernel code, it is becoming harder to manually reason about
the mapping between permission checks and privileged functions.
In reality, kernel developers rely on their own judgment to decide
which checks to use, often leading to over-approximation issues.
For instance, Capabilities were originally introduced to solve
the “super” root problem, but it turns out that more than 38%
of Capabilities indeed check CAP_SYS_ADMIN, rendering it yet
another root [5].

Even worse, there is no systematic, sound, and scalable way to
examine whether all privileged functions (via all possible paths)
are indeed protected by correct permission checks. The lack of
tools for checking the soundness of existing or new permission
checks can jeopardize the kernel security putting the privileged
functions at risk. For example, DAC, Capabilities and LSM intro-
duce hundreds of security checks scattered over millions of lines of
the kernel code, and it is an open problem to verify if all code paths
to a privileged function have validated the required permission
checks before reaching the function. Given the distributed nature
of kernel development and the significant amount of daily updates,
chances are that some parts of the code may miss checks on some
paths or introduce the inconsistency between checks, weakening
the operating system security.

This paper presents PeX, a static permission check analysis
framework for Linux kernel. PeX makes it possible to soundly
and scalably detect any missing, inconsistent and redundant per-
mission checks in the kernel code. At a high level, PeX statically
explores all possible program paths from user-entry points (e.g.,
system calls) to privileged functions and detects permission check
errors therein. Suppose PeX finds a path in which a privileged
function, say PF, is protected (preceded) by a check, say Chk in
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one code. If it is found that any other paths to PF bypass Chk,
then it is a strong indication of a missing check. Similarly, PeX
can detect inconsistent and redundant permission checks. While
conceptually simple, it is very challenging to realize a sound and
precise permission check error detection at the scale of Linux
kernel.

In particular, there are two daunting challenges that PeX
would like to address. First, Linux kernel uses indirect calls very
frequently, yet its static call graph analysis is notoriously difficult.
The Linux kernel v4.18.5 contains 15.8M LOC, 247K functions,
and 115K indirect callsites, rendering existing precise solutions
(e.g., SVF [6]) unscalable. The only workaround available to
date is either to apply the solutions unsoundly (e.g., only on a
small code partition as with K-Miner [7]) or to rely on naive
imprecise solutions (e.g., type-based analysis). Either way leads
to undesirable results, i.e., false negatives (K-Miner) or false
positives (type-based one).

For a precise and scalable indirect call analysis, we introduce
a novel solution called KIRIN (Kernel InteRface based Indirect
call aNalysis), which leverages kernel abstraction interfaces to
enable precise yet scalable indirect call analysis. Our experiment
with Linux v4.18.5 shows that KIRIN allows PeX to detect many
previously unknown permission check bugs, while other existing
solutions either miss many of them or introduce too many false
warnings.

Second, unlike Android which has been designed with the
permission-based security model in mind [8], Linux kernel does
not document the mapping between a permission check and a
privileged function. More importantly, the huge Linux kernel code
base makes it practically impossible to review them all manually
for the permission check verification.

To tackle this problem, PeX presents a new technique which
automatically identifies permission checks and all their wrappers.
Moreover, PeX leverages dominator analysis [9] to automatically
identify the mappings between permission checks and their poten-
tially privileged functions.

The contributions of this paper are summarized as follows:
• New Techniques: We proposed and implemented PeX, a static

permission check analysis framework for Linux kernel. We also
developed new techniques that can perform scalable indirect
call analysis and automate the process of identifying permission
checks and privileged functions.

• Practical Impacts: We analyzed DAC, Capabilities, and LSM
permission checks in the latest Linux kernel v4.18.5 using PeX,
and discovered 45 new permission check bugs, 17 of which have
been confirmed by kernel developers.

• Community Contributions: We release PeX as an open source
project, along with the identified mapping between permission
checks and privileged functions. This will allow kernel devel-
opers to validate their codes with PeX, and to contribute to PeX
by refining the mappings with their own domain knowledge.

2 BACKGROUND: PERMISSION CHECKS IN LINUX

This section introduces DAC, Capabilities, and LSM in Linux
kernel. Table 1 lists practically-known permission checks in Linux.
Unfortunately, the full set is not well-documented.

2.1 Discretionary Access Control (DAC)

DAC restricts the accesses to critical resources based on the
identity of subjects or the group to which they belong [10],

TABLE 1: Commonly used permission checks in Linux kernel.

Type Total # Permission Checks
DAC 3 generic permission, sb permission, inode permission
Capabilities 3 capable, ns capable, avc has perm noaudit
LSM 190 security inode readlink, security file ioctl, etc..

[11]. In Linux, each user is assigned a user identifier (uid) and
a group identifier (gid). Correspondingly, each file has properties
including the owner, the group, the rwx (read, write, and execute)
permission bits for the owner, the group, and all other users. When
a process wants to access a file, DAC grants the access permissions
based on the process’s uid, gid as well as the file’s permission bits.
For example in Linux, inode_permission (as listed in Table 1)
is often used to check the permissions of the current process on a
given inode. More precisely speaking, however, it is a wrapper of
posix_acl_permission, which performs the actual check.

In versions before v2.2, the Linux kernel uses a simple separa-
tion of normal users and the super user (i.e., root), where the root
bypasses all the in-kernel permission checks. This motivates fine-
grained access control scheme—such as Capabilities—to weaken
the power of the root user.

2.2 Capabilities

Capabilities, since Linux kernel v2.2 (1999), enable a fine-grained
access control by dividing the root privileges into small sets.
As an example, for users with the CAP_NET_ADMIN capability,
kernel allows them to use ping, without granting the full root
privileges. Currently, Linux kernel v4.18.5 supports 38 Capabil-
ities including CAP_NET_ADMIN, CAP_SYS_ADMIN, and so on.
Functions capable and ns_capable are the most commonly
used permission checks for Capabilities (as listed in Table 1).
Both determine whether a process has a particular capability or
not, while ns_capable performs an additional check against a
given user namespace. They internally use security_capable
as the basic permission check.

Capabilities are supposed to be fine-grained and distinct [2].
However, due to the lack of clear scope definitions, the choice of
specific capability for protecting a privileged function has been
made based on kernel developers’ own understanding in practice.
Unfortunately, this leads to frequent use of CAP_SYS_ADMIN (451
out of 1167 in v4.18.5, more than 38%), and it is just treated as
yet another root [5]; grsecurity points out that 19 Capabilities are
indeed equivalent to the full root [12].

2.3 Linux Security Module (LSM)

LSM [13], introduced in kernel v2.6 (2003), provides a set of
fine-grained pluggable hooks that are placed at various security-
critical points across the kernel. System administrators can register
customized permission checking callbacks to the LSM hooks so as
to enforce diverse security policies. One common use of LSM is
to implement Mandatory Access Control (MAC) [14] in Linux
(e.g., SELinux [3], [15], AppArmor [4]). MAC enforces more
strict and non-overridable access control policies, controlled by
system administrators. For example, when a process tries to read
the file path of a symbolic link, security_inode_readlink
is invoked to check whether the process has read permission to
the symlink file. The SELinux callback of this hook checks if
a policy rule can grant this permission (e.g., allow domain_a
type_b:lnk_file read). It is worth noting that the effective-
ness of LSM and its MAC mechanisms highly depend on whether
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1 int scsi_ioctl(struct scsi_device *sdev, int cmd,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 if (!capable(CAP_SYS_ADMIN) ||

!capable(CAP_SYS_RAWIO))↪→
6 return -EACCES;
7 return sg_scsi_ioctl(sdev->request_queue, NULL,

0, arg);↪→
8 ...
9 }

(a) sg_scsi_ioctl (Line 7) is called with CAP_SYS_ADMIN
and CAP_SYS_RAWIO capability checks (Line 5). arg is user
space controllable.

1 int scsi_cmd_ioctl(struct request_queue *q, ...,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 ...
6 if (!arg)
7 break;
8 err = sg_scsi_ioctl(q, bd_disk, mode, arg);
9 break;

10 ...
11 return err;
12 }

(b) sg_scsi_ioctl (Line 8) is called without capability checks.
arg is user space controllable.
1 int sg_scsi_ioctl(struct request_queue *q, struct

gendisk *disk, fmode_t mode, struct
scsi_ioctl_command __user *sic)

↪→
↪→

2 {
3 ...
4 err = blk_verify_command(req->cmd, mode);
5 ...
6 return err;
7 }
8
9 int blk_verify_command(unsigned char *cmd, fmode_t

mode)↪→
10 {
11 ...
12 if (capable(CAP_SYS_RAWIO))
13 return 0;
14 ...
15 return -EPERM;
16 }

(c) sg_scsi_ioctl calls blk_verify_command, which
checks CAP_SYS_RAWIO capability.

Fig. 1: Capabilities check errors discovered by PeX.

the hooks are placed correctly and soundly at all security-critical
points. If a hook is missing at any critical point, there is no way
for MAC to enforce a permission check.

3 EXAMPLES OF PERMISSION CHECK ERRORS

This section illustrates different kinds of permission check errors,
found by PeX and confirmed by the Linux kernel developers.
We refer to the functions that validate whether a process (a user
or a group) has proper permission to do certain operations as
permission checks. Similarly, we define privileged functions to be
those functions which only a privileged process can access and
thus require permission checks.

3.1 Capabilities Permission Check Errors

Figure 1 shows real code snippets of Capabilities permission
check errors in Linux kernel v4.18.5. Figure 1a shows the kernel
function scsi_ioctl, in which sg_scsi_ioctl (Line 7) is
safeguarded by two capability checks, CAP_SYS_ADMIN and
CAP_SYS_RAWIO (Line 5). To the contrary, scsi_cmd_ioctl
in Figure 1b calls the same function sg_scsi_ioctl (Line 8)
without any capability check. These two functions share three
similarities. First, both of them are reachable from the userspace
by ioctl system call. Second, both call sg_scsi_ioctl with
a userspace parameter, void __user *arg. Last, there is no

1 static int do_readlinkat(int dfd, const char __user
*pathname, char __user *buf, int bufsiz)↪→

2 {
3 ...
4 error = security_inode_readlink(path.dentry);
5 if (!error) {
6 touch_atime(&path);
7 error = vfs_readlink(path.dentry, buf, bufsiz);
8 }
9 ...

10 }

(a) Kernel LSM usage in system call readlinkat.
vfs_readlink (Line 7) is protected by
security_inode_readlink (Line 4). Both pathname
and buf (Line 1 and Line 7) are user controllable.
1 int ksys_ioctl(unsigned int fd, unsigned int cmd,

unsigned long arg)↪→
2 {
3 ...
4 error = security_file_ioctl(f.file, cmd, arg);
5 if (!error)
6 error = do_vfs_ioctl(f.file, fd, cmd, arg);
7 ...
8 }
9

10 int xfs_readlink_by_handle(struct file *parfilp,
xfs_fsop_handlereq_t *hreq)↪→

11 {
12 ...
13 error = vfs_readlink(dentry, hreq->ohandle, olen);
14 ...
15 }

(b) Kernel LSM usage in system call ioctl. It
calls security_file_ioctl (Line 4) to protect
do_vfs_ioctl (Line 6). hreq->ohandle and olen
are also user controllable.

Fig. 2: LSM check errors discovered by PeX.

preceding capability check on all possible paths to them (though
scsi_ioctl performs two checks).

The kernel is supposed to sanitize userspace inputs and check
permissions to ensure that only users with appropriate permissions
can conduct certain privileged operations. As SCSI (Small Com-
puter System Interface) functions manipulate the hardware, they
should be protected by Capabilities. At first glance, scsi_ioctl
seems to be correctly protected (while scsi_cmd_ioctl misses
two capability checks).

However, delving into sg_scsi_ioctl ends up with a
different conclusion. As shown in Figure 1c, sg_scsi_ioctl
calls blk_verify_command, which in turn checks
CAP_SYS_RAWIO. Considering all together, scsi_ioctl
checks CAP_SYS_ADMIN once but CAP_SYS_RAWIO “twice”,
leading to a redundant permission check. On the other hand,
scsi_cmd_ioctl checks only CAP_SYS_RAWIO, resulting in
a missing permission check for CAP_SYS_ADMIN. In particular,
PeX detects this bug as an inconsistent permission check because
the two paths disagree with each other, and further investigation
shows that one is redundant and the other is missing.

3.2 LSM Permission Check Errors

The example of LSM permission check errors is related to
how LSM hooks are instrumented for two different system calls
readlinkat and ioctl.

Figure 2a shows the LSM usage in the readlinkat system
call. On its call path, vfs_readlink (Line 7) is protected by
the LSM hook security_inode_readlink (Line 4) so that
a LSM-based MAC mechanism, such as SELinux or AppArmor,
can be realized to allow or deny the vfs_readlink operation.

Figure 2b presents two sub-functions for the system call
ioctl. Similar to the above case, ioctl calls ksys_ioctl,
which includes its own LSM hook security_file_ioctl
(Line 4) before do_vfs_ioctl (Line 6). This is a proper design,
and there is no problem so far. However, it turns out that there is
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1 struct file_operations {
2 ...
3 ssize_t (*read_iter) (struct kiocb *, struct

iov_iter *);,!
4 ssize_t (*write_iter) (struct kiocb *, struct

iov_iter *);,!
5 ...
6 }

(a) The Virtual File System (VFS) kernel interface.

const struct file_operations ext4_file_operations
{

. . .

.read_iter = ext4_file_read_iter,

.write_iter = ext4_file_write_iter,

. . .
}

syscall(1, fd, buffer, count)

write(fd, buffer, count)

SyS_write(fd, buffer, count)
vfs_write(fd.file, buffer, count, fd.pos)

file->f_op->write_iter(kio, iter);

User space

Kernel space syscall dispatcher

const struct file_operations nfs_file_operations
{

. . .

.read_iter = nfs_file_read,

.write_iter = nfs_file_write,

. . .
}

(b) VFS indirect calls in Linux kernel.
Fig. 3: Indirect call examples via the VFS kernel interface.

a path from do_vfs_ioctl to xfs_readlink_by_handle
(Line 10), which eventually calls the same privileged func-
tion vfs_readlink (see Line 7 in Figure 2a and Line
13 in Figure 2b). While this function is protected by the
security_inode_readlink LSM hook in readlinkat, that
is not the case for the path to the function going through
xfs_readlink_by_handle. The problem is that SELinux
maintains separate ‘allow’ rules for read and ioctl. With the
missing LSM security_inode_readlink check, a user only
with the ‘ioctl’ allow rule may exploit the ioctl system call to
trigger the vfs_readlink operation, while this operation might
not be permitted by the ‘read’ allow rule.

The above two Capabilities and LSM examples show how
challenging it is to ensure correct permission checks. There are
no tools available for kernel developers to rely on to figure out
whether a particular function should be protected by a permission
check, and (if so) which permission checks should be used.

4 CHALLENGES

This section discusses two critical challenges in designing static
analysis for detecting permission errors in Linux kernel.

4.1 Indirect Call Analysis in Kernel

The first challenge lies in the frequent use of indirect calls in
Linux kernel and the difficulties in statically analyzing them in
a scalable and precise manner. To achieve a modular design,
the kernel uses a diverse set of abstraction layers that specify
the common interfaces to different concrete implementations. For
example, Virtual File System (VFS) [16] abstracts a file system,
thereby providing a unified and transparent way to access local
(e.g., ext4) and network (e.g., nfs) storage devices. Under this
kernel programming paradigm, an abstraction layer defines an
interface as a set of indirect function pointers while a concrete
module initializes these pointers with its own implementations.

For example, as shown in Figure 3a, VFS abstracts all file system
operations in a kernel interface struct file_operations
that contains a set of function pointers for different file operations.
When a file system is initialized, it initializes the VFS interface
with the concrete function addresses of its own. For instance,
Figure 3b shows that ext4 file system sets the write_iter
function pointer to ext4_file_write_iter, while nfs sets
the pointer to nfs_file_write.

However, kernel’s large code base challenges the resolution of
these numerous function pointers within kernel interfaces. For ex-
ample, the kernel used in our evaluation (v4.18.5) includes 15.8M
LOC, 247K functions, and 115K indirect callsites. This huge code
base makes existing precise pointer analysis techniques [6], [17],
[18], [19], [20] unscalable. In fact, the state-of-the-art technique—
Static Value Flow (SVF) [6] uses flow- and context-sensitive value
flow for high precision, but cannot scale to the huge Linux kernel
code base. That is because SVF is essentially a whole program
analysis, and its indirect call resolution thus requires tracking
all objects such as functions, variables, and so on, making the
value flow analysis unscalable to the large-size Linux kernel. In
our experiment of running SVF for the kernel on a machine with
256GB memory, SVF was crashed due to an out of memory error1.

Alternatively, one may opt for a simple “type-based” function
pointer analysis, which would scale to Linux kernel. However,
the type-based indirect call analysis would suffer from serious
imprecision with too many false targets, because function pointers
in the kernel often share the same type. For example, in Figure 3a,
two function pointers read_iter and write_iter share the
same function type. Type based pointer analysis will even link
write_iter to ext4_file_read_iter falsely, which may
lead to false permission check warnings.

PeX addresses this problem with a new kernel-interface aware
indirect call analysis technique, detailed in §5.

4.2 The Lack of Full Permission Checks, Privileged
Functions, and Their Mappings

The second challenge lies in soundly enumerating a set of permis-
sion checks and inferring correct mappings between permission
checks and privileged functions in Linux kernel.

Though some commonly used permission checks for
DAC, Capabilities, and LSM are known (Table 1), ker-
nel developers often devise custom permission checks (wrap-
pers) that internally use basic permission checks. Unfortu-
nately, the complete list of such permission checks has never
been documented. For example, ns_capable is a com-
monly used permission check for Capabilities, but it calls
ns_capable_common and security_capable in sequence.
It is the last security_capable that performs the actual capa-
bility check. In other words, all the others are “wrappers” of the
“basic” permission check security_capable. Therefore, it is
challenging to identify all permission checks and wrappers.

To make matters worse, Linux kernel has no explicit
documentation that specifies which privileged function should
be protected by which permission checks. This is differ-
ent from Android [8], which has been designed with the
permission-based security model in mind from the beginning.
Take the Android LocationManager class as an example;

1. SVF internally uses LLVM SparseVectors to save memory overhead by
only storing the set bits. However, it still blows up both the memory and the
computation time due to the expensive insert, expand and merge operations.
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for the getLastKnownLocation method, the API document
states explicitly that permission ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION is required [21].

Unfortunately, existing static permission error checking tech-
niques are not readily applicable in order to address these prob-
lems. Automated LSM hook verification [22] works only with
clearly defined LSM hooks, which would miss many wrappers
in the kernel setting. Many other tools require heavy manual
efforts such as user-provided security rules [23], [24], authoriza-
tion constraints [25], annotation on sensitive objects [26]. These
manual processes are particularly error-prone when applied to
huge Linux code base. Alternatively, some works such as [27],
[28] rely on dynamic analysis. However, such run-time approaches
may significantly limit the code coverage being analyzed, thereby
missing real bugs.

Moreover, none of the existing works can detect permission
checks soundly. Their inability to recognize permission checks or
wrappers leads to missing privileged functions or false warnings
for those that are indeed protected by wrappers. Since the huge
Linux kernel code base makes it practically impossible to review
them all manually, reasoning about the mapping is considered to
be a daunting challenge.

In light of this, PeX presents a novel static analysis technique
that automatically identifies basic permission checks and leverages
them as a basis for finding other permission check wrappers (§6.3).
In addition, PeX proposes a dominator analysis based solution to
automatically infer the mappings between permission checks and
privileged functions (§6.4).

5 KIRIN INDIRECT CALL ANALYSIS

PeX proposes a precise and scalable indirect call analysis tech-
nique, called KIRIN (Kernel InteRface based Indirect call aNaly-
sis), on top of the LLVM [29] framework. KIRIN is inspired by
two key observations: (1) almost all (95%) indirect calls in the
Linux kernel are originated from kernel interfaces (§4.1) and (2)
the type of a kernel interface is preserved both at its initialization
site (where a function pointer is defined) and at the indirect callsite
(where a function pointer is used) in LLVM IR. For example in
Figure 3b, the kernel interface object ext4_file_operations
of the type struct file_operations is statically ini-
tialized where ext4_file_write_iter is assigned to
the field of write_iter. For the indirect call site
file→f_op→write_iter, one can identify that f_op
is of the type struct file_operations and infer that
ext4_file_write_iter is one of potential call targets. Based
on this observation, PeX first collects indirect call targets at
kernel interface initialization sites (§5.1) and then resolves them
at indirect callsites (§5.2).

5.1 Indirect Call Target Collection

In Linux kernel, a kernel interface is often defined in a C
struct comprised of function pointers (§4.1): e.g., struct
file_operations in Figure 3a. Many kernel interfaces
(C structs) are statically allocated and initialized as with
ext4_file_operations and nfs_file_operations in
Figure 3b. Some interfaces may be dynamically allocated and
initialized at run time for reconfiguration.

For the former, KIRIN scans all Linux kernel code lin-
early to find all statically allocated and initialized struct
objects with function pointer fields. Then, for each struct

1 @ext4_file_operations = dso_local local_unnamed_addr
constant %struct.file_operations {,!

2 %struct.module* null,
3 i64 (%struct.file*, i64, i32)* @ext4_llseek,
4 i64 (%struct.file*, i8*, i64, i64*)* null,
5 i64 (%struct.file*, i8*, i64, i64*)* null,
6 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_read_iter,,!
7 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_write_iter,,!

(a) LLVM IR of ext4_file_operations initialization.

1 %25 = load %struct.file_operations*,
%struct.file_operations** %f_op, align 8,!

2 %write_iter.i.i = getelementptr inbounds
%struct.file_operations,
%struct.file_operations* %25, i64 0, i32 5

,!
,!

3 %26 = load i64 (%struct.kiocb*, %struct.iov_iter*)*,
i64 (%struct.kiocb*, %struct.iov_iter*)**
%write_iter.i.i, align 8

,!
,!

4 %call.i.i = call i64 %26(%struct.kiocb* nonnull
%kiocb.i, %struct.iov_iter* nonnull %iter.i) #10,!

(b) LLVM IR of callsite file→f_op→write_iter in
vfs_write.

Fig. 4: Indirect callsite resolution for vfs_write.

1 struct usb_driver* driver =
container_of(intf->dev.driver, struct
usb_driver, drvwrap.driver);

,!
,!

2 retval = driver->unlocked_ioctl(intf,
ctl->ioctl_code, buf);,!

(a) C code of a container_of usage, followed by an indirect
call.
1 #define container_of(ptr, type, member) ({
2 void *__mptr = (void *)(ptr);
3 ((type *)(__mptr - offsetof(type, member))); })

\\
4 %unlocked_ioctl = getelementptr inbounds i8*, i8**

%add.ptr76, i64 3,!

(b) Original container_of and the LLVM IR for the callsite.
1 #define container_of(ptr, type, member) ({
2 type* __res;
3 void* __mptr = ((void *)((void*)(ptr) -

offsetof(type, member)));,!
4 memcpy(&__res, &__mptr, sizeof(void*));
5 (__res);})

\\\
\\

6 %unlocked_ioctl = getelementptr inbounds
%struct.usb_driver, %struct.usb_driver* %20, i64
0, i32 3

,!
,!

(c) Modified container_of and the LLVM IR for the callsite.

Fig. 5: Fixing container_of missing struct type problem.

object, KIRIN keep tracks of which function address is as-
signed to which function pointers field using an offset as a
key for the field. For instance, Figure 4a shows the LLVM IR
of statically initialized ext4_file_operations. KIRIN finds
that the kernel interface type is struct file_operations
(Line 1), and ext4_file_write_iter is assigned to the
5th field write_iter (Line 7). Therefore, KIRIN figures out
that write_iter may point to ext4_file_write_iter, not
ext4_file_read_iter (even though they have the same func-
tion type).

For the rest dynamically initialized kernel interfaces, KIRIN
performs a data flow analysis to collect any assignment of a
function address to the function pointer inside a kernel interface.
KIRIN’s field-sensitive analysis allows the collected targets to be
associated with the individual field of a kernel interface.
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Fig. 6: PeX static analysis architecture. Kernel source code is the input of this architecture. PeX takes as input the naming patterns
of DAC and Capabilities, and LSM certain data structure, to automatically detect the permission check. Finally PeX reports as output
permission check errors. PeX also produces mappings between identified permission checks and privileged functions as output.

5.2 Indirect Callsite Resolution

KIRIN stores the result of the above first pass in a key-value map
data structure in which the key is a pair of kernel interface type
and an offset (a field), and the value is a set of call targets. At each
indirect callsite, KIRIN retrieves the type of a kernel interface
and the offset from LLVM IR, looks up the map using them
as a key, and figures out the matched call targets. For example,
Figure 4b shows the LLVM IR snippet in which an indirect
call file→f_op→write_iter is made inside of vfs_write.
When an indirect call is made (Line 4), KIRIN finds that the
kernel interface type is struct file_operations (Line 1)
and the offset is 5 (Line 2). In this way, KIRIN reports that
ext4_file_write_iter (assigned at Line 7 in Figure 4a) is
one of potential call targets that are indirectly called by derefer-
encing write_iter.

When applying KIRIN to Linux kernel, we found in certain
callsites, the kernel interface type is not presented in the LLVM
IR, making their resolution impossible. For example, the macro
container_of is commonly used in order to get the starting
address of a struct object by using a pointer to its own member
field. Figure 5a shows an example of using container_of (Line
1). It calculates the starting address of usb_driver through
its own member drvwrap.driver. Based on the address, the
code at Line 2 makes an indirect call by using a function
pointer unlocked_ioctl that is another member of the struct
usb_driver object.

Figure 5b shows the original macro container_of (Lines
1-3) and resulting LLVM IR (Line 4). The problem of this
macro is that it involves a pointer manipulation, the LLVM IR
of which voids the struct type information, i.e., the second
argument of the macro. To solve this problem, KIRIN redefines
container_of in a way that the struct type is preserved in the
LLVM IR (on which KIRIN works), as in Figure 5c (Lines 1-5).
This adds back the kernel interface type struct.usb_driver
in the LLVM IR (Line 6), thereby enabling KIRIN to in-
fer the correct type of driver and resolve the targets for
unlocked_ioctl. Note that container_of is the only special
case that needs to be handled. Overcoming this, KIRIN achieves a
high indirect callsite resolution rate.

Our experiment (§7.2) shows that KIRIN resolves 92% of
total indirect callsites for allyesconfig. PeX constructs a more
sound (less missing edges) and precise (less false edges) call graph
than other existing workarounds (e.g., [7]).

6 DESIGN OF PEX

Figure 6 shows the architecture of PeX. It takes as input kernel
source code (in the LLVM bitcode format), and reports all de-
tected permission check errors, including missing, inconsistent,
and redundant permission checks. In addition, PeX produces the
mapping of permission checks and privileged functions, which has
not been formally documented.

At a high-level, PeX first resolves indirect calls with our new
technique called KIRIN (§5). Next, PeX builds an augmented
call graph—in which indirect callsites are connected to possible
targets—and cuts out only the portion reachable from user space
(§6.1). Based on the partitioned call graph, PeX then generates
the interprocedural control flow graph (ICFG) where each callsite
is connected to the entry and the exit of the callee [30]. Then,
taking the DAC/CAP macro naming patterns and the LSM data
structure patterns as input, PeX detects permission checks (§6.2)
and their wrappers automatically (§6.3). After that, for a permis-
sion check, PeX identifies its potentially privileged functions on
top of the ICFG (§6.4), followed by a heuristic-based filter to
prune obviously non-privileged functions (§6.5). Finally, for each
privileged function, PeX examines all user space reachable paths
to it to detect any permission checks error on the paths (§6.6). The
following section describes these steps in detail.

6.1 Call Graph Generation and Partition

PeX generates the call graph leveraging the result of KIRIN (§5),
and then partitions it into two groups.

User Space Reachable Functions: Starting from functions
with the common prefix SyS_ (indicating system call entry
points), PeX traverses the call graph, marks all visited functions,
and treats them as user space reachable functions. The user
reachable functions in this partition are investigated for possible
permission check errors.

Kernel Initialization Functions: Functions that are used only
during booting are collected to detect redundant checks. The Linux
kernel boots from the start_kernel function, and calls a list
of functions with the common prefix __init. PeX performs
multiple call graph traversals starting from start_kernel and
each of the __init functions to collect them.

Other functions such as IRQ handlers and kernel thread func-
tions are not used in later analysis since they cannot be directly
called from user space. The partitioned call graph serves as a basis
for building an interprocedural control flow graph (ICFG) [9] used
in the inference of the mapping between permission checks and
privileged functions (§6.4).
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TABLE 2: Automatically Detected Permission Check Functions

defconfig allyesconfig
DAC CAP LSM DAC CAP LSM

# of basic checks 13 16 184 37 21 218
# of detected wrappers 10 18 104 97 68 159
# of all checks 16 20 288 106 72 377

1 // DAC: 8 macros in /include/linux/fs.h
2 #define MAY_EXEC 0x00000001
3 #define MAY_WRITE 0x00000002
4 #define MAY_READ 0x00000004
5 ...
6 #define MAY_NOT_BLOCK 0x00000080
7
8 // Capabilities: 38 macros in

/include/uapi/linux/capability.h↪→
9 #define CAP_CHOWN 0

10 #define CAP_DAC_OVERRIDE 1
11 #define CAP_DAC_READ_SEARCH 2
12 ...
13 #define CAP_AUDIT_READ 37

(a) The definitions of permission macros.

1 int generic_permission(struct inode *inode, int
mask)↪→

2 {
3 ...
4 ret = acl_permission_check(inode, mask);
5 ...
6 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
7 if (mask == MAY_READ)
8 if (capable_wrt_inode_uidgid(inode,

CAP_DAC_READ_SEARCH))↪→
9 return 0;

10 ...
11 }

(b) The usages of permission macros in a permission check function.

Fig. 7: The permissions of DAC and Capabilities are implemented
as macro-based definitions (v4.18.5).

6.2 Automatic Permission Check Detection

On the indirect call resolved call graph, PeX requires all per-
mission checks at first, as shown in Figure 6. In the preliminary
version of this paper [31], we manually select several basic permis-
sion checks as input for follow-up detection. Unfortunately, it has
several drawbacks. First, the detection totally depends on the qual-
ity of the user input, and low quality leads to imprecision. If user
input misses a basic check, we miss the wrapper permission checks
derived from the basic one. Furthermore, PeX detects privileged
functions and report bugs based on the identified checks, which
results in missing bug reports. Second, the requirement of user
input introduces a maintenance burden when using PeX because of
the rapid evolution of Linux kernel. For different kernel versions,
the users of PeX are required to recollect the set of permission
checks, as Linux kernel developers might add or remove certain
permission checks. To address these problems, we propose a new
approach for detecting permission checks automatically for DAC,
Capabilities, and LSM.

6.2.1 Permission Check Detection for DAC and Capabilities

Our insights. We observe that DAC and Capabilities use macros
to represent the actual permissions, and these macros are used
by the permission checks. Therefore, PeX can leverage usages of
these macros to detect permission checks. Linux kernel defines 8
DAC macros and 38 Capabilities macros to represent permissions
for DAC and Capabilities in v4.18.5, as shown in Figure 7a.

Algorithm 1 Basic Permission Check Detection for DAC and
Capabilities
INPUT:

macros - DAC and Capabilities permission macros
OUTPUT:

macrousages - macro usage set
permchecks - basic permission checks

1: procedure MACROUSAGEDETECTION(var)
2: for u← Usage(var) do
3: if u is an Assignment Instruction then
4: v ← getSinkV ar(u)
5: MacroUsageDetection(v)
6: else
7: macrousages.insert(u)
8: end if
9: end for

10: end procedure
11: procedure PERMISSIONCHECKDETECTION(macros)
12: for m← macros do
13: MacroUsageDetection(m)
14: end for
15: for usage← macrousages do
16: if usage is a Call Instruction then
17: func← getCallee(usage)
18: permchecks.insert(func)
19: else if usage is a Comparison Instruction then
20: func← getFunction(usage)
21: permchecks.insert(func)
22: end if
23: end for
24: return permchecks
25: end procedure

These macros are defined following certain naming patterns,
such as the ones for DAC are beginning with MAY_ and the
ones for Capabilities are beginning with CAP_. For example,
CAP_DAC_READ_SEARCH represents the capability to perform
file/directory read operations [32]. Therefore, PeX takes these
macro naming patterns as the input to detect permission checks
automatically.

Though conceptually simple, the detection faces two chal-
lenges. First, the defined permission macros might not be used
directly for permission checks. A macro is possibly assigned to a
variable and then propagates to more variables. These variables are
then used for permission checks. To collect a comprehensive set
of macro usages, PeX performs a field-sensitive inter-procedural
analysis to collect both usages of macros (direct usages) and
usages of those variables (indirect usages). Second, macro us-
ages vary significantly in Linux kernel, such as being passed
as arguments into a function or used in a function directly. To
detect permission checks precisely, PeX needs to handle macro
usages separately. Taking macro naming patterns as input, PeX
conducts a two-step analysis, namely macro usage detection and
permission check detection, to output basic permission checks, as
shown in Algorithm 1.

Macro usage detection: PeX conducts a field-sensitive inter-
procedural analysis to collect both direct and indirect macro
usages, as shown in Algorithm 1. For each macro, the procedure
MacroUsageDetection is called (Line 13) with the macro
as an initial input. It traverses all usages of the input macro
and collects them into a set macrousages. If the usage is an
assignment instruction that assigns the macro to a sink variable v,
MacroUsageDetection is called recursively with v as a new
input (Line 4 and 5). Otherwise, the usages are inserted into the
set macrousages (Line 7).

The analysis is inter-procedural and field-sensitive. If the
variable (field) is passed to a function call, the analysis digs into
the callee to find its usages. Finally, the iterative algorithm collects
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1 struct security_hook_heads {
2 ...
3 struct hlist_head key_permission;
4 ...
5 } __randomize_layout;
6
7 static struct security_hook_list selinux_hooks[]

__lsm_ro_after_init = {↪→
8 ...
9 LSM_HOOK_INIT(key_permission,

selinux_key_permission),↪→
10 ...
11 };
12
13 #define call_int_hook(FUNC, IRC, ...) ({ \
14 ... \
15 hlist_for_each_entry(P,

&security_hook_heads.FUNC, list) { \↪→
16 RC = P->hook.FUNC(__VA_ARGS__); \
17 ... \
18 })
19
20 int security_key_permission(key_ref_t key_ref,

const struct cred *cred, enum key_need_perm
need_perm)

↪→
↪→

21 {
22 return call_int_hook(key_permission, 0,

key_ref, cred, need_perm);↪→
23 }

Fig. 8: LSM permission checks (hooks) uses
security_hook_heads to organize registered callbacks.

all direct and indirect usages into the set macrousages.

Permission check detection: PeX leverages the collected macro
usages to detect basic permission checks, as shown by the proce-
dure PermissionCheckDetection in Algorithm 1. Here we
regard the function as a basic permission check if the function
either (1) directly/indirectly uses the macro as an argument or (2)
contains a comparison instruction that directly/indirectly uses the
macro as an operand.

Functions with permission macro arguments: PeX ana-
lyzes all call instructions in the macro usage set to detect
these functions. If a call instruction directly/indirectly uses a
macro as an argument, the analysis marks the callee as a
permission check function. As shown in Figure 7b at Line
8, the macro CAP_DAC_READ_SEARCH is used as an argu-
ment in the call instructions. The analysis identifies the callee
capable_wrt_inode_uidgid as a basic permission check.

Functions containing permission macro comparison instruc-
tions: PeX traverses all comparison instructions in the macro usage
set. For each instruction, at least one operand is macro directly
or the variable that is assigned with a macro. The functions that
contain these comparison instructions are marked as permission
check functions. As shown at Line 7 in Figure 7b, MAY_READ is
used for the comparison, so the function generic_permission
is marked as a permission check.

The automatically-detected basic permission checks are listed
in Table 6b, which contain more functions than the ones in the user
input. More specifically, the automatic detection approach detects
13 DAC and 16 Capabilities basic checks for defconfig, and
detects 37 and 21 basic checks for allyesconfig.

6.2.2 Permission Check Detection for LSM

We observe that the organization of LSM data structure follows
certain patterns, allowing PeX to detect all LSM permission
checks automatically. Different from DAC and Capabilities, LSM
does not rely on macros to check permissions. Currently, Linux
kernel inserts LSM hooks on the critical paths. These LSM hooks

can be instantiated with different implementations to achieve dif-
ferent access control mechanisms, such as SELinux or AppArmor.
We regard these LSM hooks as LSM permission checks. Our
insight is that LSM uses a critical data structure (termed as H) to
gather all LSM hook implementations, and each member of H is
linked to one LSM hook. PeX regards the LSM hooks that directly
use the member of H as basic LSM permission checks. Therefore,
by traversing all members of H and following the call chains of
these members, PeX can detect all basic LSM permission checks
automatically. Moreover, H is highly specialized for LSM use only.
No other functionalities use it. Therefore, by using H, PeX is able
to detect LSM permission checks with high precision.

Let us use the example in Figure 8 to illustrate the de-
tection process. In Linux kernel, the data structure H is de-
fined as security_hook_heads (Line 1). SELinux regis-
ters one hook implementation selinux_key_permission into
the member key_permission of security_hook_heads at
Line 9. This member is further called by the permission check
security_key_permission (Line 20) via call_int_hook
(Line 22 and 15). Therefore, by following the calling chain of
security_hook_heads.key_permission, PeX is able to
detect the permission check security_key_permission auto-
matically. In our experiments, PeX detects 184 basic LSM permis-
sion checks for defconfig and 218 ones for allyesconfig
automatically, as shown in Table 6b.

6.3 Precise Permission Check Wrapper Detection

After collecting basic permission checks, we need to detect the
wrappers that are also used for permission checking. The identified
basic checks are often wrappers of inner permission checks that
perform low-level access control, and even worse, there could be
outer wrappers of the wrappers. PeX requires wrapper detection
to solve this. The wrapper detection in preliminary version [31]
identifies wrappers by matching their parameter of wrappers with
any parameter of user-provided basic permission checks, which
introduces many false positives. In order to improve the precision
of the permission check wrapper detection, we propose a new
technique termed as Macro-flow based Wrapper Detection for
DAC and Capabilities. PeX uses a backward analysis to find LSM
wrappers. Finally, We leverage a heuristic-based method to filter
false positives.

6.3.1 Macro-flow based Wrapper Detection

For DAC and Capabilities, a permission check might pass its
permission macro to a callee function to do low-level per-
mission check. For example in Figure 9, the identified basic
check capable_wrt_inode_uidgid pass its last argument
cap to the callee ns_capable, while cap accepts the permission
CAP_DAC_READ_SEARCH at Line 8 in Figure 7b. As these wrap-
pers are called inside basic permission checks, we refer to them as
inner-wrappers. Similarly, there are cases in which basic permis-
sion checks get permission macros from their callers. We define
these callers as outer-wrappers. Based on tracing macro-related
parameters, PeX conducts a forward inter-procedural data-flow
analysis on the ICFG to detect inner-wrappers and a backward
analysis to detect outer-wrappers.

Inner-wrapper Detection: For each basic check, a forward
analysis first recognizes the macro-related parameter. Then PeX
analyzes inner call instructions for the one that passes the param-
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1 bool capable_wrt_inode_uidgid(const struct inode
*inode, int cap)↪→

2 {
3 struct user_namespace *ns = current_user_ns();
4 return ns_capable(ns, cap) &&

privileged_wrt_inode_uidgid(ns, inode);↪→
5 }
6
7 int nfs_permission(struct inode *inode, int mask)
8 {
9 ...

10 if (res == 0)
11 res = generic_permission(inode, mask);
12 ...
13 }

Fig. 9: The example of inner/outer wrappers.

eter to its callee (inner-wrapper). Finally, the analysis recursively
digs into the newly detected callee to find more inner wrappers.

For Capabilities: PeX directly tracks the macro-related pa-
rameter to detect the inner wrappers. Using the same example
in Figure 7b, the function capable_wrt_inode_uidgid is
marked as a basic permission check and its last argument cap
accepts permission macro. PeX further digs into this function and
starts to trace the last parameter cap. As shown in Figure 9,
capable_wrt_inode_uidgid function calls three functions,
and only the second one ns_capable accepts cap parameter.
Therefore, ns_capable is identified as an inner-wrapper. More-
over, as the wrapper detection is a recursive process, PeX further
analyzes ns_capable to detect more inner-wrappers.

For DAC: The detection for DAC is more complex than Ca-
pabilities because of the logic operation of macros. In Figure 7b,
generic_permission is already considered as a basic permis-
sion check because it contains comparison instructions between
permission macro MAY_READ and a masked variable mask. Note
mask is masked with multiple DAC macros at Line 6, which is
also a macro-related parameter. The analysis traces mask and finds
out that mask is assigned to callee acl_permission_check at
Line 4, which is marked as an inner-wrapper.

Outer-wrapper Detection: To detect outer-wrappers, PeX con-
ducts a backward analysis on the call-chain, which takes all
basic permission checks and inner-wrappers together as input.
The analysis traverses all call sites of input functions and back
traces macro-related arguments in the call sites. If the macro-
related argument comes from the parameter of caller func-
tion, this caller is identified as an outer-wrapper. The function
generic_permission is marked as a basic check before, and it
is called with macro-related argument mask, as shown in Figure 9
at Line 11. Therefore, starting from this call site, PeX back
traces the flow of mask and finds that it comes from the caller’s
parameter. As a result, the caller nfs_permission is marked
as an outer-wrapper. The recursive analysis records the second
parameter mask of nfs_permission as macro-related to find
more outer-wrappers.

Compared with the approach in [31], our new approach
traces the flow of macro-related arguments only rather than all
arguments. Therefore, we reduce most of the false positives, as
discussed in §7.3.2. Especially in defconfig, the false positive
rate is close to zero.

6.3.2 LSM Wrapper Recognition

PeX conducts a backward traversal to detect LSM wrappers and
leverages a heuristic-based filter to reduce false positives. PeX

Algorithm 2 Privileged Function Detection
INPUT:

pcfuncs - all permission checking functions
OUTPUT:

pvfuncs - privileged functions
1: procedure PRIVILEGED FUNCTION DETECTION
2: for f ← pcfuncs do
3: for u← User(f) do
4: CallInst← CallInstDominatedBy(u) . Inter-procedural

analysis, for full program path
5: callee← getCallee(CallInst)
6: pvfuncs.insert(callee)
7: end for
8: end for
9: return pvfuncs

10: end procedure

analyzes all callers of basic permission checks for the one that
passes one of its parameters to a basic function. We assume
these callers are LSM wrappers. In other words, we identify
the callers that deliver their own formal parameters to the basic
permission checks. Similar to DAC and Capabilities, the LSM
wrapper detection is also recursive.

The method of wrapper detection introduces many false pos-
itives, especially in allyesconfig kernel. PeX further uses a
heuristic-based filter to prune out false permission check wrappers.
In the current prototype, the filter consists of a set of kernel library
functions and system calls. After the filtering, we further conduct
a manual review to filter out more falsely detected wrappers. At
last, we have 104 LSM wrappers for defconfig and 159 ones
for allyesconfig, as shown in Table 6b.

6.4 Privileged Function Detection

It is important to understand the mappings between permission
checks and privileged functions for effective detection of any per-
mission check errors therein. However, the lack of clear mapping
in Linux kernel complicates the detection of permission check
errors (§4.2).

To address this problem, PeX leverages an interprocedural
dominator analysis [9] that can automatically identify the priv-
ileged functions protected by a given permission check. PeX
conservatively treats all targets (callees) of those call instructions,
that are dominated by each permission check (§6.3) on top of the
ICFG (§6.1), as its potential privileged functions. The rationale
behind the dominator analysis is based on the following observa-
tion: Since there is no single path that allows the dominated call
instruction to be reached without visiting the dominator (i.e., the
permission check), the callee is likely to be the one that should be
protected by the check on all paths 2.

Algorithm 2 shows how PeX uses the dominator analysis to
find potential privileged functions pvfuncs for a given list of
permission check functions pcfuncs. For each permission check
function f (Line 2), PeX finds all users of f, i.e., the callsite
invoking f (Line 3). For each user (callsite) u, PeX performs
interprocedural dominator analysis over the ICFG to find all
dominated call instructions (Line 4). All their callees are then
added to pvfuncs (Lines 5-6).

Note that the call graph generated by KIRIN (§5) has resolved
most of the indirect calls, which allows PeX to perform—on top
of the resulting ICFG—more sound privileged function detection.

2. This does not necessarily mean that the permission check dominates all
call instructions of ICFG which invoke the resulting privileged function. As
long as some call instructions are dominated by the check, their callees are
treated as privileged functions.
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Algorithm 3 Permission Check Error Detection
INPUT:

pc− pv - permission check function to privileged function mapping
pcfuncs - all permission check functions
kinitfuncs - kernel init functions

1: procedure PERMISSION CHECK ERROR DETECTION
2: for pair ← pc− pv do
3: pvfuncs← pair.pv . privileged functions
4: pcfunc← pair.pc . permission check functions
5: for f ← pvfuncs do
6: allpath← getAllPathUseFunc(f) . get all user reachable paths

that call the privileged function f
7: for p← allpath do
8: pvcall← PrivilegeFunctionCallInPath(p)
9: if pvcall not Preceded by pcfunc then

10: if pvcall not Preceded by any pcfuncs then
11: report(p) . Report missing checks
12: else
13: report(p) . Report inconsistent check
14: end if
15: else if pvcall Preceded by multiple same pcfunc then
16: report(p) . Report redundant checks
17: end if
18: end for
19: end for
20: end for
21: for f ← kinitfuncs do
22: if f uses any pcfuncs then
23: report(f) . Report unnecessary checks during kernel boot
24: end if
25: end for
26: end procedure

For example, our experiment (§7.3) shows that KIRIN can iden-
tify ecryptfs_setxattr (reachable via indirect calls over the
ICFG) as a privileged function and detect its missing permission
check bug (Table 7, LSM-17). Note that if some other unsound
workaround such as [7] had been used, this bug would not have
been detected.

6.5 Non-privileged Function Filter

Besides the wrapper filter, PeX also needs to filter out the non-
privileged functions. The conservative approach in §6.4 may lead
to false privileged functions. In this step, PeX applies heuristic-
based filters to prune out false privileged functions. The filter
contains a set of kernel library functions which are not privileged
functions, e.g., kmalloc, strcmp, kstrtoint. If a detected
privileged function falls into the filter set, PeX would remove it
from the privileged functions.

PeX is currently designed to avoid false negatives on privileged
functions, and thus chooses a conservative approach (i.e., a small
set of library functions only) for filtering out privileged functions.
On top of the existing filter, one can add more aggressive filters
to purge more false privileged functions. With releasing PeX, we
expect a good opportunity for the kernel development community
to contribute to the design of non-privileged function filters where
domain knowledge is helpful.

6.6 Permission Check Error Detection

This last step is validating the use of privileged functions to detect
any potential permission check errors. For a given mapping be-
tween a permission check and a privileged function, PeX performs
a backward traversal of the ICFG, starting from the privileged
functions with the corresponding permission check in mind. Note
that PeX validates every possible path to each privileged function
of interest.

Algorithm 3 shows PeX’s permission check error detection
algorithm. Recall that PeX treats user reachable kernel functions

and kernel initialization functions separately and detects differ-
ent forms of errors (§6.1). Lines 2-12 shows how PeX detects
missing, redundant, and inconsistent checks in user reachable
kernel functions. For each privileged function f (Line 5) in a
mapping, PeX finds all possible paths allpath from user entry
points to that privileged function f over the ICFG (Line 6). Line
7-18 checks each path p for the preceding permission check
function, the lack of which should be reported as a bug. If the
call to the privileged function (pvcall) is not preceded by the
corresponding permission check function (pcfunc) and any other
check functions (those in pcfuncs) over a given path p, then PeX
reports a missing check (Lines 6-7). And if pvcall is preceded
not by the corresponding check (pcfunc) but other check in
pcfuncs, PeX reports an inconsistent check. Finally, if PeX
discovers that pvcall is indeed preceded by pcfunc checks but
multiple times, then it reports a redundant check (Lines 15-17).
Besides, Lines 21-25 shows how PeX detects redundant checks in
kernel initialization functions. With the __init attribute (§6.1),
the functions in kinitfuncs can only be executed during
booting and will be freed when the booting is done. Therefore,
these functions do not need any permission checks. All detected
permission checks are marked as redundant (Lines 22-24).

7 IMPLEMENTATION AND EVALUATION

The implementation of PeX has two versions. The first version
was implemented on LLVM/Clang-6.0 [29] that contains about 7K
lines of C/C++ code. It still requires the user-provided permission
checks as the input [31]. The second version eliminates this
requirement by automating the detection of permission checks.
It was implemented on LLVM/Clang-11.0 and added about 2K
lines of code. We evaluated PeX on kernel v4.18.5.

To support the automatic DAC and Capabilities permission
detection, PeX redefines their permission macros to allow easy
recognition. To differentiate from other constant numbers in ker-
nel, PeX redefines the macros by adding a magic number. More-
over, to recognize multiple macros involving logical operations,
the lower bits of the magic number must be zeroed out. Therefore,
PeX chooses large prime numbers, left-shifts them by 12 bits
and then uses them as the magic numbers. As such, PeX uses
0xF2827000 as the magic number for DAC and 0xF3FA3000
as the one for Capabilities. In total, PeX redefines 8 DAC macros
and 38 Capabilities macros.

To support PeX, Clang was modified to preserve the kernel
interface type at allocation/initialization sites by using an identified
struct type instead of using unnamed literal struct type. We also
automated the generation of the single-file whole vmlinux LLVM
bitcode vmlinux.bc using wllvm [33]. This avoids building
each kernel module separately or changing kernel build infras-
tructures, as observed in prior kernel static analysis works [7],
[34]. In summary, KIRIN resolves 86%–92% of indirect callsites
depending on its compilation configurations. PeX reported 45
permission check errors warnings to the Linux community, 17
of which have been confirmed as real bugs.

7.1 Evaluation Methodology

We evaluated PeX with two different kernel configurations: (1)
defconfig, the (commonly-used) default configuration, and
(2) allyesconfig with all non-conflict configuration options
enabled. The use of allyesconfig not only stress-tests PeX
(including KIRIN) with a larger code base than defconfig,
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TABLE 3: Input Statistics for Kernel.

defconfig allyesconfig
# of yes(=y) config 1284 9939
# of compiled LOC 2,414,772 15,881,692
vmlinux size 481 MB 3.8 GB
vmlinux.bc size 387 MB 3.3 GB
# of total functions 42,264 247,465
# of syscall entries 857 1,027
# of init functions 1,570 9,301
# of indirect callsites (ICS) 20,338 115,537

TABLE 4: Indirect Call Pointer Analysis.

defconfig allyesconfig
KIRIN TYPE KM KIRIN TYPE KM

% of ICS resolved 86 100 1 92 100 na
# of avg target 3.6 10K 3.6 6.2 81K na
analysis time (min) 1 1 9,869 6.6 1 na

but also covers the majority of kernel code, allowing PeX to
detect more bugs. In addition, we evaluated the two different
versions of implementations. For the user input based check de-
tection, we used 3 DAC, 3 Capabilities, and 190 LSM permission
checks(Table 1) as input permission checks, from which PeX finds
other wrappers. For the non-privileged function filter, we collected
1827 library functions from lib directory in the kernel source
code. All experiments were carried out on a machine running
Ubuntu 16.04 with two Intel Xeon E5-2650 2.20GHz CPU and
256GB DRAM. For the second version, we automatically detected
the permission checks to find bugs. All experiments we carried out
on a machine running Ubuntu 20.04.2 with two Intel Xeon Gold
5218R 2.10GHz and 512 DRAM. The other settings are the same
with the first version.

7.2 Evaluation of KIRIN

We compared the effectiveness and efficiency of KIRIN with type-
based approach and SVF-based K-Miner approach.

K-Miner [7] works around the scalability problem in SVF
by analyzing the kernel on a per system call basis, rather than
taking the entire kernel code for analysis. K-Miner generates
a (small-size) partition of kernel code which can be reached
from a given system call, and (unsoundly) applies SVF for that
partition. For comparison, we took K-Miner’s implementation
from the github [35] and added the logic to count the number
of resolved indirect callsites and the average number of targets per
callsite. As K-Miner was originally built on LLVM/Clang-3.8.1,
we recompiled the same kernel v4.18.5 using wllvm with the
same kernel configurations.

Table 4 summaries evaluation results of KIRIN, comparing it
to the type-based approach and K-Miner approach in terms of the
percentage of indirect callsite (ICS) resolved, the average number
of targets per ICS, and the total analysis time.

7.2.1 Resolution Rate

For K-Miner, we observe somewhat surprising results: it resolves
only 1% of all indirect callsites. After further investigation, we
noticed that SVF runs on each partition whose code base is smaller
than the whole kernel, its analysis scope is significantly limited
and unable to resolve function pointers in other partitions, leading
to the poor resolution rate.

TABLE 5: Comparison of PeX warnings when used with different
indirect call analyses.

defconfig allyesconfig
DAC CAP LSM Bugs DAC CAP LSM Bugs

KIRIN 72 210 853 21 221 850 1017 36
TYPE 218 348 1319 21 164 964 4364 19 (PeX Timeout)
KM 54 196 241 6 na na na na (SVF Timeout)

Besides, we found out that K-Miner does not work for
allyesconfig which contains a much larger code base than
defconfig. Note that K-Miner evaluated its approach only for
defconfig in the original paper [7]. The K-Miner approach turns
out to be not scalable to handle allyesconfig which ends up
encountering out of memory error even for analyzing a single
system call.

7.2.2 Resolved Average Targets

For KIRIN, the number of average indirect call targets per resolved
indirect callsite is much smaller than that of the type-based
approach as shown in the second row of Table 4. The reason
is that the type-based approach classifies all functions (not only
address-taken functions) into different sets based on the function
type. This implies that all functions in the set are regarded as
possible call targets of that function pointer. For example, as
shown in Figure 3a, two functions ext4_file_read_iter and
ext4_file_write_iter share the same type. As a result, the
type-based approach incorrectly identifies both functions as possi-
ble call targets of the function pointer f_ops→write_iter.

7.2.3 Analysis Time

The total analysis times of each ICS resolution approach are shown
in the last row of Table 4. As expected, the type-based approach is
the fastest, finishing analysis in 1 minute for both configurations.
KIRIN runs slower than the type-based approach. However, the
analysis time of KIRIN (≈1 minute) is comparable to that of
the type-based approach for defconfig, while KIRIN takes 6.6
minutes for allyesconfig.

For a fair comparison with K-Miner, care must be taken when
we collect its indirect call analysis time. For a given system call,
we measured K-Miner’s running time from the beginning until it
produces the SVF point-to result, which does not include the later
bug detection time. To obtain the total analysis time of K-Miner,
we summed up the running times of all system calls. The result
shows that SVF based K-Miner takes about 9,869 minutes to finish
analyzing all system calls of defconfig, which is much slower
than KIRIN’s.

7.3 PeX Result

This section shows the results of PeX when using two different
sets of permission checks, one set is user-provided and the other
is automatically detected.

7.3.1 User-provided Permission Checks

Table 6a summarizes PeX’s intermediate program analyses when
using user-provided permission checks. As allyesconfig sub-
sumes defconfig in static analysis, we focus on discussing
allyesconfig results here. Overall, PeX finishes all analyses
within a few hours and reports about two thousand groups of
warnings, which are classified by privileged functions. One may
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implement a multi-threaded version of PeX to further reduce the
analysis time.

Given the small number of input DAC, Capabilities, and
LSM permission checks (3, 3, and 190 each), PeX’s permis-
sion check detection [31] was able to identify 19, 16 and 53
permission check wrappers. For example, PeX detects wrap-
pers such as nfs_permission and may_open for DAC;
sk_net_capable and netlink_capable for Capabilities;
and key_task_permission and __ptrace_may_access for
LSM.

Table 6a also shows the number of potentially privileged
functions detected by PeX (§6.4) and the number of remaining
privileged functions after kernel library filtering (§6.5). We found
that there are typically 1-to-1 or 2-to-1 mapping between permis-
sion checks and privileged functions. Overall, PeX reports 221,
850, and 1017 warnings (grouped by privileged functions) for
DAC, Capabilities, and LSM, respectively. PeX reports 36 bugs
using user-provided permission checks, 14 of which have been
confirmed by Linux kernel developers.

Comparison. To highlight the effectiveness of KIRIN, we re-
peated the end-to-end PeX analysis of first version (user-provided
permission checks) using type-based (PeX+TYPE) and K-Miner-
style (PeX+KM) indirect call analyses. Table 5 shows the resulting
number of warnings and detected bugs when the 36 bugs— shown
in Table 7—are used as an oracle for false negative comparison.

For allyesconfig, PeX+TYPE and PeX+KM could not
complete the analysis within the 12-hour experiment limit.
PeX+TYPE generated too many (false) edges in ICFG and suf-
fered from path explosion during the last phase of PeX analysis;
only 19 bugs were reported before the timeout. In the mean time,
PeX+KM timed out on an earlier pointer analysis phase, thereby
failing to report any bug.

When defconfig is used for comparison, PeX+TYPE and
PeX+KM were able to complete the analysis. In this setting,
PeX+KIRIN (original) and PeX+TYPE both report 21 bugs
(a subset of 36 bugs detected with allyesconfig). Though
PeX+TYPE can capture them all (as type-based analysis is sound
yet imprecise), it generates up to 3x more warnings, placing a
high burden on the users side for their manual review. On the
other hand, as an unsound solution, PeX+KM produces a limited
number of warnings, resulting in the detection of only 6 bugs
missing the rest.
7.3.2 Automatically Detected Permission Checks

Table 6b summarizes the result of PeX with the automatic per-
mission check detection. Similarly, we also focus on the result
of allyesconfig, in which PeX finds 37, 21, and 218 basic
checks for DAC, Capabilities, and LSM. Based on the basic ones,
PeX detects 97, 68, and 159 permission check wrappers for DAC,
Capabilities, LSM, respectively. The automatically-detected basic
permission checks and wrappers are super-sets of the ones de-
tected using user-provided checks. As a result, the automatic check
detection reports all warnings found by the user input based check
detection. Because more permission checks are detected, PeX is
able to mark more privilege functions. For DAC, Capabilities, and
LSM, 3129, 3020, and 3756 are detected after filtering. Finally,
PeX reports 830, 491, and 558 warnings grouped by privilege
functions for DAC, Capabilities, LSM. Note that the result of the
user input based check detection contains many false permission
checks, leading to more false warnings. PeX reports 9 more bugs
using the automatic-detected checks than using the user-provided

TABLE 6: The detection result using two different sets of permis-
sion checks.

(a) The result of user-provided permission checks (first version).

defconfig allyesconfig
DAC CAP LSM DAC CAP LSM

# of input checks 3 3 190 3 3 190
# of detected wrappers 11 13 34 19 16 53
# of priv func detected 174 869 2030 631 3770 10915
# of priv func after filter 116 582 1635 537 3245 10260
# of warnings grouped
by priv func 72 210 853 221 850 1017

total time (min) 6 8 11 83 247 169

(b) The result of automatic detection of permission checks (second
version).

defconfig allyesconfig
DAC CAP LSM DAC CAP LSM

# of basic checks 13 16 184 37 21 218
# of detected wrappers 10 18 104 97 68 159
# of priv func detected 619 964 2528 3301 3186 3890
# of priv func after filter 567 810 2315 3129 3020 3756
# of warnings grouped
by priv func 129 137 337 830 491 558

total time (min) 1 2 2 235 207 130

ones, 3 of which have been confirmed by Linux kernel developers.
All 45 bugs are listed in Table 7. Kernel developers ignored some
bugs and decided not to make changes because they believe that
these bugs are not exploitable. We discuss them in detail in §7.5.

After collecting the permission checks, we manually confirm
true positives that are shown in Table 6b. For each detected
permission check, we look up the source code, the calling context,
and the annotation to confirm true positives.

Basic check detection comparison. For brevity, we term
automatic-detected basic permission checks as Pauto and the user-
provided ones as Puser. In defconfig kernel, Pauto contains
all true positives of Puser. Note that Puser contains 190 LSM
basic checks, which include 14 false positives and miss 8 true
positives. In contrast, Pauto contains all 184 true positives of
defconfig with no false positives. Furthermore, when enabling
more configuration in allyesconfig, more permission checks
are compiled into kernel IR, Puser misses more checks, as it
uses the same input for both defconfig and allyesconfig.
Therefore, the precision of Pauto is better than Puser.

Wrapper detection comparison. For brevity, we term wrap-
pers identified based on automatic-detected checks as Wauto and
the one identified based on user-provided checks as Wuser. Wauto

has fewer false positives than Wuser . In defconfig kernel, the
false positive rates of Wuser are around 90%, 84%, and 90%
for DAC, Capabilities and LSM, respectively. The rates are even
higher in allyesconfig. On the contrary, the false positive
rates of Wauto for defconfig are 0%, 0% and 3%, and for
allyesconfig are 27%, 36%, and 14%, respectively.

Note that some wrappers in Wuser are identified as basic
checks in Pauto. For example, in defconfig, 4 of 11 DAC
wrappers in Table 6a are automatically detected as basic checks
in Table 6b, which explains why Wauto has one fewer DAC
wrapper than Wuser. In reference to the aggregate of both basic
checks and wrappers, automatic-detected results include all true
positives of user-provided ones and contain more checks.
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7.4 Manual Review of Warnings

The manual review process of reported warnings is to determine
whether a privileged function identified by PeX (§6.4) is a true
privileged function or not. As long as one can confirm that a
function is indeed privileged, reported warnings regarding its
missing, inconsistent, and redundant permission checks should be
true positives from PeX’s point of view.

Though kernel developers with domain knowledge may be
able to discern them with no complication, we (as a third-party)
try to understand whether a given function can be used to access
critical resources (e.g., device, file system, etc.). As a result, we
conservatively reported 45 bug warnings to the community; we
suspect that there could be more true warnings missed due to
our lack of domain knowledge. We plan to release PeX and the
list of potential privileged functions, hoping kernel developers
will contribute to identify privileged functions and fix more true
permission errors. Certain static paths reported by PeX may not
be feasible during program execution, resulting in false positives.
One may devise a solution solving path constraints as in symbolic
execution engines [36] to address this problem, PeX currently does
not do so.

We conservatively reported 45 bug warnings to the community
in total and 9 of them are newly detected by using automatic
detection of permission checks. In total, 17 of them are confirmed
by developers.

7.5 Discussion of Security Bug Findings
7.5.1 Missing Check

Figure 2b is one of the confirmed missing LSM checks (LSM-28).
We discuss two more confirmed cases.

The CAP-4 missing check in kernel random device driver
is particularly critical and triggered active discussion in the ker-
nel developer community (including Torvalds). Random number
generator serves as the foundation of many cryptography libraries
including OpenSSL, and thus the quality of the random number
is very critical. This security bug allows attackers to manipulate
entropy pool, which can potentially corrupt many applications
using cryptography libraries. Specifically, a problematic path
starts from evdev_write and reaches the privileged function
credit_entropy_bits, which can control the entropy in the
entropy pool, while bypassing the required CAP_SYS_ADMIN
permission check.

The LSM-28 missing check in xfs_file_ioctl led to
another interesting discussion among kernel developers [37].
With this interface, a userspace program may perform low-level
file system operations, but security_inode_readlink LSM
hook was missing. An adversary could exploit this interface
and gain access to the whole file system that is not allowed
by LSM policy. Interestingly, however, the privileged function
performed CAP_SYS_ADMIN capability permission check. This
created disagreement between kernel developers: one group ar-
gues that the LSM hook is necessary, while another thinks that
CAP_SYS_ADMIN is sufficient. We agree with the former because
LSM is designed to limit the damage of a compromised process to
the system, even the ones of root user [15]. We believe that LSM
permission checks should still be enforced as always for better
security even when the current user is root.

Kernel developers decided not to fix 9 of our reported bugs
because they believe these bugs are not exploitable. As discussed
earlier, PeX in the current form neither validates if a suspicious

static path is dynamically reachable, nor generates a concrete
exploit to demonstrate the security issue; we believe both are good
future works. Nonetheless, we have one complaint to share.

For the LSM-26 and LSM-27 cases, PeX found that
the LSM hooks security_kernel_read_file and
security_kernel_post_read_file were used to
protect the privileged functions kernel_read_file and
kernel_post_read_file in some program paths. We
reported missing LSM hooks in load_elf_binary and
load_elf_library for these privileged functions. However,
the kernel developers responded that those hooks are used
to monitor loading firmware/kernel modules only (not other
files), and thus no patch is required. Here, the implication
we found is three-fold. First, the permission check names are
ambiguous and misleading. Second, we were not able to find
any documentation of such LSM specification regarding the
protection of firmware/kernel modules. Last, PeX actually found
a counter-example in IMA where the same checks are indeed used
for loading other files (neither firmware nor kernel modules).
Consequently, we suggest changing the function name and
documenting the clear intention to avoid any confusion and to
prevent system administrators from creating an LSM policy that
does not work.

7.5.2 Inconsistent Check

The CAP-19 inconsistent check has been discussed in Figure 1.
One program path in Figures 1a and 1c has two CAP_SYS_RAWIO
checks and one CAP_SYS_ADMIN check, while another path in
Figures 1b and 1c has only one CAP_SYS_ADMIN check. PeX
detects this bug as an inconsistent check, but from the viewpoint
of correction, which requires adding CAP_SYS_RAWIO, this may
also be viewed as a missing check. There is a separate redundant
check error in CAP_SYS_RAWIO.

scsi_ioctl in Figure 1a checks both CAP_SYS_ADMIN
and CAP_SYS_RAWIO. However, in a different network sub-
system (not shown), we found that too_many_unix_fds per-
forms a weaker permission check with the CAP_SYS_ADMIN or
CAP_SYS_RAWIO condition. We believe this OR-based weaker
check is not a good practice because this in effect makes
CAP_SYS_ADMIN too powerful (like root), diminishing the benefit
of fine-grained capability-based access control.

The CAP-20 and CAP-21 inconsistent error reports
were acknowledged but ignored by the kernel develop-
ers for the following reason. For the same privileged
function prctl_set_mm_exe_file, which is used to set
an executable file, PeX discovered one case requiring
CAP_SYS_RESOURCE in user namespace, and another case
checking CAP_SYS_ADMIN in init namespace. Kernel devel-
opers responded that each case is fine by design for that specific
context. PeX does not consider the precise context in which
prctl_set_mm_exe_file is used (similar to aforementioned
security_kernel_read_file used for loading kernel mod-
ules), leading to an imprecise report, but we believe that both
CAP-20 and CAP-21 are worthwhile for further investigation.

The newly detected bug CAP-22 is in rawsock_create
function. This function calls the privilege function sk_alloc by
checking capability CAP_SYS_ADMIN in the init namespace by
the permission check capable. However, it requires to check the
capability in the user namespace using ns_capable. The kernel
developers confirmed this bug and we already submitted a patch
to fix it.
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TABLE 7: Bugs Reported By PeX. Confirmed, Ignored or Pending.

Type-# File Function Description Status
DAC-1 fs/btrfs/send.c btrfs_send missing DAC check when traversing a snapshot C
DAC-2 fs/ecryptfs/inode.c ecryptfs_removexattr(),_setxattr() missing xattr_permission() C
DAC-3 fs/ecryptfs/inode.c ecryptfs_listxattr() missing xattr_permission() C
CAP-4 drivers/char/random.c write_pool(), credit_entropy_bits() missing CAP_SYS_ADMIN C
CAP-5 drivers/scsi/sg.c sg_scsi_ioctl() missing CAP_SYS_ADMIN or CAP_SYS_RAWIO I
CAP-6 drivers/block/pktcdvd.c add_store(), remove_store() missing CAP_SYS_ADMIN I
CAP-7 drivers/char/nvram.c nvram_write() missing CAP_SYS_ADMIN I
CAP-8 drivers/firmware/efi/efivars.c efivar_entry_set() missing CAP_SYS_ADMIN C
CAP-9 net/rfkill/core.c rfkill_set_block(), rfkill_fop_write() missing CAP_NET_ADMIN C
CAP-10 block/scsi ioctl.c mmc_rpmb_ioctl() missing verify command or CAP_SYS_ADMIN I
CAP-11 drivers/platform/x86/thinkpad acpi.c acpi_evalf() missing CAP_SYS_ADMIN I
CAP-12 drivers/md/dm.c dm_blk_ioctl() missing CAP_RAW_IO I
CAP-13 drivers/char/random.c _extract_crng() missing CAP_SYS_ADMIN I
CAP-14 kernel/cgroup/cgroup-v1.c cgroup1_reconfigure() redundant CAP_SYS_ADMIN C
CAP-15 drivers/scsi/sg.c sg_ioctl_common() missing CAP_SYS_ADMIN or CAP_SYS_RAWIO I
CAP-16 kernel/audit.c audit_multicast_unbind() missing CAP_AUDIT_READ I
CAP-17 net/unix/af unix.c unix_create1() missing CAP_NET_RAW I
CAP-18 drivers/isdn/mISDN/socket.c base_sock_create() missing CAP_NET_RAW C
CAP-19 block/bsg.c bsg_ioctl inconsistent/missing CAP_SYS_ADMIN C
CAP-20 kernel/sys.c prctl_set_mm_exe_file inconsistent capability check I
CAP-21 kernel/sys.c prctl_set_mm_exe_file inconsistent capability and namespace check I
CAP-22 net/nfc/rawsock.c rawsock_create() inconsistent namespace check C
CAP-23 block/scsi ioctl.c blk_verify_command redundant check CAP_SYS_RAWIO I
LSM-24 fs/ecryptfs/inode.c ecryptfs_removexattr(), _setxattr() missing security_inode_removexattr() C
LSM-25 mm/mmap.c remap_file_pages missing security_mmap_file() I
LSM-26 fs/binfmt elf.c load_elf_binary() missing security_kernel_read_file I
LSM-27 fs/binfmt elf.c load_elf_library() missing security_kernel_read_file I
LSM-28 fs/xfs/xfs ioctl.c xfs_file_ioctl() missing security_inode_readlink() C
LSM-29 kernel/workqueue.c wq_nice_store() missing security_task_setnice() C
LSM-30 fs/ecryptfs/inode.c ecryptfs_listxattr() missing security_inode_listxattr C
LSM-31 include/linux/sched.h comm_write() missing security_task_prctl() C
LSM-32 fs/binfmt misc.c load_elf_binary() missing security_bprm_set_creds() I
LSM-33 drivers/android/binder.c binder_set_nice missing security_task_setnice() I
LSM-34 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_bind I
LSM-35 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_listen I
LSM-36 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_bind I
LSM-37 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_listen I
LSM-38 fs/dlm/lowcomms.c sctp_listen_for_all missing security_socket_listen I
LSM-39 net/socket.c kernel_bind missing security_socket_bind I
LSM-40 net/socket.c kernel_listen missing security_socket_listen I
LSM-41 net/socket.c kernel_connect missing security_socket_connect I
LSM-42 net/ipv4/route.c ipv4_sk_update_pmtu() missing security_sk_classify_flow I
LSM-43 net/socket.c __sys_accept4_file missing security_socket_create I
LSM-44 fs/ocfs2/cluster/tcp.c o2net_start_listening() redundant security_socket_create C
LSM-45 fs/ocfs2/cluster/tcp.c o2net_open_listening_sock() redundant security_socket_create C

7.5.3 Redundant Check

A redundant check occurs in two forms. First, for user-reachable
functions, it happens when a privileged function is covered by
the same permission checks multiple times. We reported three
cases. The CAP-23 case was discussed in Figures 1a and 1c
with two CAP_SYS_RAWIO checks, which was ignored by kernel
developers. On the other hand, for the LSM-44 and LSM-45 cases
found in the ocfs2 file system, the other kernel developer group
confirmed and promised to fix the bugs. Second, any permission
check in kernel-initialization functions is marked as redundant
because the boot thread is executed under root. PeX detected tens
of such cases, but we did not report them as they are less critical.

7.6 Limitations and Future Work

In this section, we discuss PeX limitations and the future work.
Incomplete validation of detection results. In this paper,

we propose automatic methods to identify permission checks and
the associated privileged functions. However, there are no official
documents that specify the complete set of permission checks
and privileged functions. As a result, we have no ground truth
to evaluate our detection methods. We tried our best to build a
ground truth and evaluate our approach upon it. However, the
built ground truth might not be complete due to the limitation

of our domain knowledge. Therefore, our future work is to build
the complete ground truth and evaluate the detection methods
thoroughly. Moreover, to build the complete ground truth, we
plan to open our detection results to the public, so that kernel
developers can contribute their domain knowledge to perfect the
set of permission checks, privileged functions and their mappings.

Imperfect coverage of privileged functions. The privileged-
function-oriented approach adopted by PeX might miss certain
cases. The critical resources protected by permission checks might
not be accessed through privileged functions. One such case is
in timerslack_ns_write, after the capability checking, the
critical field p->timer_slack_ns is updated directly, without
using any privileged functions [38]. Therefore, to improve the
analysis coverage, our future work is to identify the critical
resources automatically to complement the privileged-function-
oriented approach.

8 RELATED WORK

8.1 Hook Verification and Placement

There is a series of studies on checking kernel LSM hooks.
Automated LSM hook verification work [23] verifies the complete
mediation of LSM hooks relying manually specified security rules.
While [24] automates LSM hook placements utilizing manually
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written specification of security sensitive operations. However,
required manual processes are error-prone when applied to huge
Linux code base. Edwards et al. [27] proposed to use dynamic
analysis to detect LSM hook inconsistencies. While PeX is using
static analysis, can achieve better code coverage.

AutoISES [22] is the most closely related work to PeX.
AutoISES regards data structures, such as the structure fields and
global variables, as privileged, applies static analysis to extract
security check usage patterns, and validates the protections to
these data structures. The difference between AutoISES and PeX
is three-fold. First, PeX is privileged function oriented while
AutoISES is more like data structure oriented. Second, AutoISES
is designed for LSM only, whose permission checks (hooks) are
clearly defined, and therefore it is not applicable to DAC and
Capabilities due to their various permission check wrappers. In
contrast, PeX works for all three types of permission checks.
Third, AutoISES uses type-based pointer analysis to resolve in-
direct calls, while PeX uses KIRIN to resolve indirect calls in a
more precise manner.

There are also works [25], [26], [28] that extend authorization
hook analysis to user space programs, including X server and
postgresql. However, their approaches canot be applied to the
huge kernel scale. Moreover, all of above works either do not
analyze indirect calls at all, or apply over approximate indirect
call analysis techniques, such as type-based approach or field
insensitive approach. On the contrary, PeX uses KIRIN, a precise
and scalable indirect call analysis technique, which can also
benefit these works by finding more accurate indirect call targets.

8.2 Kernel Static Analysis Tools

Coccinelle [39] is a tool that detects a bug of pre-defined pattern
based on text pattern matching on the symbolic representation
of bug cases. This is basically intra-procedural analysis. Building
upon Coccinelle, Wang et al. proposed another pattern matching
based static tool which detects potential double-fetch vulnerabili-
ties in the Linux kernel [40].

Sparse [41] is designed to detect the problematic use of
pointers belonging to different address space (kernel space or
userspace). Later, Sparse was used to build a static analysis
framework called Smatch [42] for detecting different sorts of
kernel bugs. However, Smatch is also based on intra-procedural
analysis, thus it can only find shallow bugs.

Double-Fetch [43], Check-it-again [34] focus on detecting
time of check to time of use (TOCTTOU) bugs. Dr. Checker [44]
is designed for analyzing Linux kernel drivers. It adopts the
modular design, allowing new bug detectors to be plug-in eas-
ily. KINT [45] applies taint analysis to detect integer errors in
Linux kernel while UniSan [46] leverages the same analysis to
detect uninitialized kernel memory leakages to the userspace.
Chucky [47] also uses a taint analysis to analyze missing checks
in different sources in userspace programs and Linux kernel.
However, Chucky can handle only kernel file system code due
to the lack of pointer analysis. Note that to resolve indirect call
targets, all these works leverage a type-based approach, which is
not as accurate as KIRIN, thus suffering from false positives.

MECA [48] is an annotation based static analysis framework,
and it can detect security rule violations in Linux. APISan [49]
aims at finding API misuse. It figures out the right API usage
through the analysis of existing code base and performs intra-
procedural analysis to find bugs. To achieve the former, APISan

relies on relaxed symbolic execution which is complementary to
the techniques used in PeX.

8.3 Permission Check Analysis Tools

Engler et al. propose to use programmer beliefs to automatically
extract checking information from the source code. They apply the
checking information to detect missing checks [50]. RoleCast [51]
leverages software engineering patterns to detect missing security
checks in web applications. TESLA [52] implements temporal
assertions based on LLVM instrument, in which the FreeBSD
hooks are checked by inserted assertions dynamically. Different
from TESLA, PeX uses KIRIN to analyze jump targets of all
kernel function pointers statically, achieving better resolution rate
and code coverage. JIGSAW [53] is a system that can auto-
matically derive programmer expectations on resources access
and enforce it on the deployment. It is designed for analyzing
userspace programs, cannot be applied to kernel directly.

JUXTA [54] is a tool designed for detecting semantic bugs in
filesystem while PScout [55] is a static analysis tool for validating
Android permission checking mechanisms. Kratos [56] is a static
security check framework designed for the Android framework.
It builds a call graph using LLVM and tries to discover inconsis-
tent check paths in the framework. However, Android has well-
documented permission check specifications [8], i.e., privileged
functions and the permission required for them are both clearly
defined. In contrast, the Linux kernel has no such documentation,
which makes it impossible to apply PScout and Kratos to Linux
kernel permission checks.

9 CONCLUSION

This paper presents PeX, a static permission check analysis
framework for Linux kernel, which can automatically identify
permission check functions and infer mappings between permis-
sion checks and privileged functions. Therefore PeX can detect
missing, inconsistent, and redundant permission checks for any
privileged functions. PeX relies on KIRIN, our novel call graph
analysis based on kernel interfaces, to resolve indirect calls pre-
cisely and efficiently.

We evaluated both KIRIN and PeX for the latest stable
Linux kernel v4.18.5. The experiments show that KIRIN can
resolve 86%-92% of all indirect callsites in the kernel within 7
minutes. In particular, PeX reported 45 permission check bugs
of DAC, Capabilities, and LSM, 17 of which have already been
confirmed by the kernel developers. PeX source code is available
at https://github.com/Jeimon/PermCheck, along with the identified
mapping between permission checks and privileged functions. We
believe that such a mapping allows kernel developers to validate
their code with PeX and encourages them to contribute to PeX by
refining the mapping with their domain knowledge.
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